The present paper introduces an ongoing research which aims to detect interpretable adjectival senses from monolingual corpora applying an unsupervised WSI approach. According to our expectations the findings of our investigation are going to contribute to the work of lexicographers, linguists and also facilitate the creation of benchmarks with semantic information for the NLP community. For doing so, we set up four criteria to distinguish between senses. We experiment with a graphical approach to model our criteria and then perform a detailed, linguistically motivated manual evaluation of the results.
The aim of our software presentation is to demonstrate that corpus-driven bilingual dictionaries generated fully by automatic means are suitable for human use. Need for such dictionaries shows up specifically in the case of lesser used languages where due to the low demand it does not pay off for publishers to invest into the production of dictionaries. Previous experiments have proven that bilingual lexicons can be created by applying word alignment on parallel corpora. Such an approach, especially the corpus-driven nature of it, yields several advantages over more traditional approaches. Most importantly, automatically attained translation probabilities are able to guarantee that the most frequently used translations come first within an entry. However, the proposed technique have to face some difficulties, as well. In particular, the scarce availability of parallel texts for medium density languages imposes limitations on the size of the resulting dictionary. Our objective is to design and implement a dictionary building workflow and a query system that is apt to exploit the additional benefits of the method and overcome the disadvantages of it.
This paper describes an approach based on word alignment on parallel corpora, which aims at facilitating the lexicographic work of dictionary building. Although this method has been widely used in the MT community for at least 16 years, as far as we know, it has not been applied to facilitate the creation of bilingual dictionaries for human use. The proposed corpus-driven technique, in particular the exploitation of parallel corpora, proved to be helpful in the creation of such dictionaries for several reasons. Most importantly, a parallel corpus of appropriate size guarantees that the most relevant translations are included in the dictionary. Moreover, based on the translational probabilities it is possible to rank translation candidates, which ensures that the most frequently used translation variants go first within an entry. A further advantage is that all the relevant example sentences from the parallel corpora are easily accessible, thus facilitating the selection of the most appropriate translations from possible translation candidates. Due to these properties the method is particularly apt to enable the production of active or encoding dictionaries.