Emre Barut


Multimodal Context Carryover
Prashan Wanigasekara | Nalin Gupta | Fan Yang | Emre Barut | Zeynab Raeesy | Kechen Qin | Stephen Rawls | Xinyue Liu | Chengwei Su | Spurthi Sandiri
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

Multi-modality support has become an integral part of creating a seamless user experience with modern voice assistants with smart displays. Users refer to images, video thumbnails, or the accompanying text descriptions on the screen through voice communication with AI powered devices. This raises the need to either augment existing commercial voice only dialogue systems with state-of-the-art multimodal components, or to introduce entirely new architectures; where the latter can lead to costly system revamps. To support the emerging visual navigation and visual product selection use cases, we propose to augment commercially deployed voice-only dialogue systems with additional multi-modal components. In this work, we present a novel yet pragmatic approach to expand an existing dialogue-based context carryover system (Chen et al., 2019a) in a voice assistant with state-of-the-art multimodal components to facilitate quick delivery of visual modality support with minimum changes. We demonstrate a 35% accuracy improvement over the existing system on an in-house multi-modal visual navigation data set.


Contextual Domain Classification with Temporal Representations
Tzu-Hsiang Lin | Yipeng Shi | Chentao Ye | Yang Fan | Weitong Ruan | Emre Barut | Wael Hamza | Chengwei Su
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Papers

In commercial dialogue systems, the Spoken Language Understanding (SLU) component tends to have numerous domains thus context is needed to help resolve ambiguities. Previous works that incorporate context for SLU have mostly focused on domains where context is limited to a few minutes. However, there are domains that have related context that could span up to hours and days. In this paper, we propose temporal representations that combine wall-clock second difference and turn order offset information to utilize both recent and distant context in a novel large-scale setup. Experiments on the Contextual Domain Classification (CDC) task with various encoder architectures show that temporal representations combining both information outperforms only one of the two. We further demonstrate that our contextual Transformer is able to reduce 13.04% of classification errors compared to a non-contextual baseline. We also conduct empirical analyses to study recent versus distant context and opportunities to lower deployment costs.