Didier López Francis


2022

pdf
UniMorph 4.0: Universal Morphology
Khuyagbaatar Batsuren | Omer Goldman | Salam Khalifa | Nizar Habash | Witold Kieraś | Gábor Bella | Brian Leonard | Garrett Nicolai | Kyle Gorman | Yustinus Ghanggo Ate | Maria Ryskina | Sabrina Mielke | Elena Budianskaya | Charbel El-Khaissi | Tiago Pimentel | Michael Gasser | William Abbott Lane | Mohit Raj | Matt Coler | Jaime Rafael Montoya Samame | Delio Siticonatzi Camaiteri | Esaú Zumaeta Rojas | Didier López Francis | Arturo Oncevay | Juan López Bautista | Gema Celeste Silva Villegas | Lucas Torroba Hennigen | Adam Ek | David Guriel | Peter Dirix | Jean-Philippe Bernardy | Andrey Scherbakov | Aziyana Bayyr-ool | Antonios Anastasopoulos | Roberto Zariquiey | Karina Sheifer | Sofya Ganieva | Hilaria Cruz | Ritván Karahóǧa | Stella Markantonatou | George Pavlidis | Matvey Plugaryov | Elena Klyachko | Ali Salehi | Candy Angulo | Jatayu Baxi | Andrew Krizhanovsky | Natalia Krizhanovskaya | Elizabeth Salesky | Clara Vania | Sardana Ivanova | Jennifer White | Rowan Hall Maudslay | Josef Valvoda | Ran Zmigrod | Paula Czarnowska | Irene Nikkarinen | Aelita Salchak | Brijesh Bhatt | Christopher Straughn | Zoey Liu | Jonathan North Washington | Yuval Pinter | Duygu Ataman | Marcin Wolinski | Totok Suhardijanto | Anna Yablonskaya | Niklas Stoehr | Hossep Dolatian | Zahroh Nuriah | Shyam Ratan | Francis M. Tyers | Edoardo M. Ponti | Grant Aiton | Aryaman Arora | Richard J. Hatcher | Ritesh Kumar | Jeremiah Young | Daria Rodionova | Anastasia Yemelina | Taras Andrushko | Igor Marchenko | Polina Mashkovtseva | Alexandra Serova | Emily Prud’hommeaux | Maria Nepomniashchaya | Fausto Giunchiglia | Eleanor Chodroff | Mans Hulden | Miikka Silfverberg | Arya D. McCarthy | David Yarowsky | Ryan Cotterell | Reut Tsarfaty | Ekaterina Vylomova
Proceedings of the Thirteenth Language Resources and Evaluation Conference

The Universal Morphology (UniMorph) project is a collaborative effort providing broad-coverage instantiated normalized morphological inflection tables for hundreds of diverse world languages. The project comprises two major thrusts: a language-independent feature schema for rich morphological annotation, and a type-level resource of annotated data in diverse languages realizing that schema. This paper presents the expansions and improvements on several fronts that were made in the last couple of years (since McCarthy et al. (2020)). Collaborative efforts by numerous linguists have added 66 new languages, including 24 endangered languages. We have implemented several improvements to the extraction pipeline to tackle some issues, e.g., missing gender and macrons information. We have amended the schema to use a hierarchical structure that is needed for morphological phenomena like multiple-argument agreement and case stacking, while adding some missing morphological features to make the schema more inclusive.In light of the last UniMorph release, we also augmented the database with morpheme segmentation for 16 languages. Lastly, this new release makes a push towards inclusion of derivational morphology in UniMorph by enriching the data and annotation schema with instances representing derivational processes from MorphyNet.

pdf
SchAman: Spell-Checking Resources and Benchmark for Endangered Languages from Amazonia
Arturo Oncevay | Gerardo Cardoso | Carlo Alva | César Lara Ávila | Jovita Vásquez Balarezo | Saúl Escobar Rodríguez | Delio Siticonatzi Camaiteri | Esaú Zumaeta Rojas | Didier López Francis | Juan López Bautista | Nimia Acho Rios | Remigio Zapata Cesareo | Héctor Erasmo Gómez Montoya | Roberto Zariquiey
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

Spell-checkers are core applications in language learning and normalisation, which may enormously contribute to language revitalisation and language teaching in the context of indigenous communities. Spell-checking as a generation task, however, requires large amount of data, which is not feasible for endangered languages, such as the languages spoken in Peruvian Amazonia. We propose here augmentation methods for various misspelling types as a strategy to train neural spell-checking models and we create an evaluation resource for four indigenous languages of Peru: Shipibo-Konibo, Asháninka, Yánesha, Yine. We focus on special errors that are significant for learning these languages, such as phoneme-to-grapheme ambiguity, grammatical errors (gender, tense, number, among others), accentuation, punctuation and normalisation in contexts where two or more writing traditions co-exist. We found that an ensemble model, trained with augmented data from various types of error achieves overall better scores in most of the error types and languages. Finally, we released our spell-checkers as a web service to be used by indigenous communities and organisations to develop future language materials.
Search
Co-authors