Deqing Yang


2022

pdf
Relation-Specific Attentions over Entity Mentions for Enhanced Document-Level Relation Extraction
Jiaxin Yu | Deqing Yang | Shuyu Tian
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Compared with traditional sentence-level relation extraction, document-level relation extraction is a more challenging task where an entity in a document may be mentioned multiple times and associated with multiple relations. However, most methods of document-level relation extraction do not distinguish between mention-level features and entity-level features, and just apply simple pooling operation for aggregating mention-level features into entity-level features. As a result, the distinct semantics between the different mentions of an entity are overlooked. To address this problem, we propose RSMAN in this paper which performs selective attentions over different entity mentions with respect to candidate relations. In this manner, the flexible and relation-specific representations of entities are obtained which indeed benefit relation classification. Our extensive experiments upon two benchmark datasets show that our RSMAN can bring significant improvements for some backbone models to achieve state-of-the-art performance, especially when an entity have multiple mentions in the document.

pdf
Generative Entity Typing with Curriculum Learning
Siyu Yuan | Deqing Yang | Jiaqing Liang | Zhixu Li | Jinxi Liu | Jingyue Huang | Yanghua Xiao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Entity typing aims to assign types to the entity mentions in given texts. The traditional classification-based entity typing paradigm has two unignorable drawbacks: 1) it fails to assign an entity to the types beyond the predefined type set, and 2) it can hardly handle few-shot and zero-shot situations where many long-tail types only have few or even no training instances. To overcome these drawbacks, we propose a novel generative entity typing (GET) paradigm: given a text with an entity mention, the multiple types for the role that the entity plays in the text are generated with a pre-trained language model (PLM). However, PLMs tend to generate coarse-grained types after fine-tuning upon the entity typing dataset. In addition, only the heterogeneous training data consisting of a small portion of human-annotated data and a large portion of auto-generated but low-quality data are provided for model training. To tackle these problems, we employ curriculum learning (CL) to train our GET model on heterogeneous data, where the curriculum could be self-adjusted with the self-paced learning according to its comprehension of the type granularity and data heterogeneity. Our extensive experiments upon the datasets of different languages and downstream tasks justify the superiority of our GET model over the state-of-the-art entity typing models. The code has been released on https://github.com/siyuyuan/GET.

pdf
Improving Continual Relation Extraction through Prototypical Contrastive Learning
Chengwei Hu | Deqing Yang | Haoliang Jin | Zhen Chen | Yanghua Xiao
Proceedings of the 29th International Conference on Computational Linguistics

Continual relation extraction (CRE) aims to extract relations towards the continuous and iterative arrival of new data, of which the major challenge is the catastrophic forgetting of old tasks. In order to alleviate this critical problem for enhanced CRE performance, we propose a novel Continual Relation Extraction framework with Contrastive Learning, namely CRECL, which is built with a classification network and a prototypical contrastive network to achieve the incremental-class learning of CRE. Specifically, in the contrastive network a given instance is contrasted with the prototype of each candidate relations stored in the memory module. Such contrastive learning scheme ensures the data distributions of all tasks more distinguishable, so as to alleviate the catastrophic forgetting further. Our experiment results not only demonstrate our CRECL’s advantage over the state-of-the-art baselines on two public datasets, but also verify the effectiveness of CRECL’s contrastive learning on improving performance.

2021

pdf
Refining Sample Embeddings with Relation Prototypes to Enhance Continual Relation Extraction
Li Cui | Deqing Yang | Jiaxin Yu | Chengwei Hu | Jiayang Cheng | Jingjie Yi | Yanghua Xiao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Continual learning has gained increasing attention in recent years, thanks to its biological interpretation and efficiency in many real-world applications. As a typical task of continual learning, continual relation extraction (CRE) aims to extract relations between entities from texts, where the samples of different relations are delivered into the model continuously. Some previous works have proved that storing typical samples of old relations in memory can help the model keep a stable understanding of old relations and avoid forgetting them. However, most methods heavily depend on the memory size in that they simply replay these memorized samples in subsequent tasks. To fully utilize memorized samples, in this paper, we employ relation prototype to extract useful information of each relation. Specifically, the prototype embedding for a specific relation is computed based on memorized samples of this relation, which is collected by K-means algorithm. The prototypes of all observed relations at current learning stage are used to re-initialize a memory network to refine subsequent sample embeddings, which ensures the model’s stable understanding on all observed relations when learning a new task. Compared with previous CRE models, our model utilizes the memory information sufficiently and efficiently, resulting in enhanced CRE performance. Our experiments show that the proposed model outperforms the state-of-the-art CRE models and has great advantage in avoiding catastrophic forgetting. The code and datasets are released on https://github.com/fd2014cl/RP-CRE.