The Chinese text correction (CTC) focuses on detecting and correcting Chinese spelling errors and grammatical errors. Most existing datasets of Chinese spelling check (CSC) and Chinese grammatical error correction (GEC) are focused on a single sentence written by Chinese-as-a-second-language (CSL) learners. We find that errors caused by native speakers differ significantly from those produced by non-native speakers. These differences make it inappropriate to use the existing test sets directly to evaluate text correction systems for native speakers. Some errors also require the cross-sentence information to be identified and corrected. In this paper, we propose a cross-sentence Chinese text correction dataset for native speakers. Concretely, we manually annotated 1,500 texts written by native speakers. The dataset consists of 30,811 sentences and more than 1,000,000 Chinese characters. It contains four types of errors: spelling errors, redundant words, missing words, and word ordering errors. We also test some state-of-the-art models on the dataset. The experimental results show that even the model with the best performance is 20 points lower than humans, which indicates that there is still much room for improvement. We hope that the new dataset can fill the gap in cross-sentence text correction for native Chinese speakers.
Multilingual pre-trained language models have shown impressive performance on cross-lingual tasks. It greatly facilitates the applications of natural language processing on low-resource languages. However, there are still some languages that the current multilingual models do not perform well on. In this paper, we propose CINO (Chinese Minority Pre-trained Language Model), a multilingual pre-trained language model for Chinese minority languages. It covers Standard Chinese, Yue Chinese, and six other ethnic minority languages. To evaluate the cross-lingual ability of the multilingual model on ethnic minority languages, we collect documents from Wikipedia and news websites, and construct two text classification datasets, WCM (Wiki-Chinese-Minority) and CMNews (Chinese-Minority-News). We show that CINO notably outperforms the baselines on various classification tasks. The CINO model and the datasets are publicly available at http://cino.hfl-rc.com.
Grammatical error diagnosis is an important task in natural language processing. This paper introduces our system at NLPTEA-2020 Task: Chinese Grammatical Error Diagnosis (CGED). CGED aims to diagnose four types of grammatical errors which are missing words (M), redundant words (R), bad word selection (S) and disordered words (W). Our system is built on the model of multi-layer bidirectional transformer encoder and ResNet is integrated into the encoder to improve the performance. We also explore two ensemble strategies including weighted averaging and stepwise ensemble selection from libraries of models to improve the performance of single model. In official evaluation, our system obtains the highest F1 scores at identification level and position level. We also recommend error corrections for specific error types and achieve the second highest F1 score at correction level.
Legal Tech is developed to help people with legal services and solve legal problems via machines. To achieve this, one of the key requirements for machines is to utilize legal knowledge and comprehend legal context. This can be fulfilled by natural language processing (NLP) techniques, for instance, text representation, text categorization, question answering (QA) and natural language inference, etc. To this end, we introduce a freely available Chinese Legal Tech system (IFlyLegal) that benefits from multiple NLP tasks. It is an integrated system that performs legal consulting, multi-way law searching, and legal document analysis by exploiting techniques such as deep contextual representations and various attention mechanisms. To our knowledge, IFlyLegal is the first Chinese legal system that employs up-to-date NLP techniques and caters for needs of different user groups, such as lawyers, judges, procurators, and clients. Since Jan, 2019, we have gathered 2,349 users and 28,238 page views (till June, 23, 2019).