Daniel Rieman


2018

pdf
The Remarkable Benefit of User-Level Aggregation for Lexical-based Population-Level Predictions
Salvatore Giorgi | Daniel Preoţiuc-Pietro | Anneke Buffone | Daniel Rieman | Lyle Ungar | H. Andrew Schwartz
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Nowcasting based on social media text promises to provide unobtrusive and near real-time predictions of community-level outcomes. These outcomes are typically regarding people, but the data is often aggregated without regard to users in the Twitter populations of each community. This paper describes a simple yet effective method for building community-level models using Twitter language aggregated by user. Results on four different U.S. county-level tasks, spanning demographic, health, and psychological outcomes show large and consistent improvements in prediction accuracies (e.g. from Pearson r=.73 to .82 for median income prediction or r=.37 to .47 for life satisfaction prediction) over the standard approach of aggregating all tweets. We make our aggregated and anonymized community-level data, derived from 37 billion tweets – over 1 billion of which were mapped to counties, available for research.

2017

pdf
Domain Adaptation from User-level Facebook Models to County-level Twitter Predictions
Daniel Rieman | Kokil Jaidka | H. Andrew Schwartz | Lyle Ungar
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Several studies have demonstrated how language models of user attributes, such as personality, can be built by using the Facebook language of social media users in conjunction with their responses to psychology questionnaires. It is challenging to apply these models to make general predictions about attributes of communities, such as personality distributions across US counties, because it requires 1. the potentially inavailability of the original training data because of privacy and ethical regulations, 2. adapting Facebook language models to Twitter language without retraining the model, and 3. adapting from users to county-level collections of tweets. We propose a two-step algorithm, Target Side Domain Adaptation (TSDA) for such domain adaptation when no labeled Twitter/county data is available. TSDA corrects for the different word distributions between Facebook and Twitter and for the varying word distributions across counties by adjusting target side word frequencies; no changes to the trained model are made. In the case of predicting the Big Five county-level personality traits, TSDA outperforms a state-of-the-art domain adaptation method, gives county-level predictions that have fewer extreme outliers, higher year-to-year stability, and higher correlation with county-level outcomes.