Chao-Hong Tan


2022

pdf
HeterMPC: A Heterogeneous Graph Neural Network for Response Generation in Multi-Party Conversations
Jia-Chen Gu | Chao-Hong Tan | Chongyang Tao | Zhen-Hua Ling | Huang Hu | Xiubo Geng | Daxin Jiang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recently, various response generation models for two-party conversations have achieved impressive improvements, but less effort has been paid to multi-party conversations (MPCs) which are more practical and complicated. Compared with a two-party conversation where a dialogue context is a sequence of utterances, building a response generation model for MPCs is more challenging, since there exist complicated context structures and the generated responses heavily rely on both interlocutors (i.e., speaker and addressee) and history utterances. To address these challenges, we present HeterMPC, a heterogeneous graph-based neural network for response generation in MPCs which models the semantics of utterances and interlocutors simultaneously with two types of nodes in a graph. Besides, we also design six types of meta relations with node-edge-type-dependent parameters to characterize the heterogeneous interactions within the graph. Through multi-hop updating, HeterMPC can adequately utilize the structural knowledge of conversations for response generation. Experimental results on the Ubuntu Internet Relay Chat (IRC) channel benchmark show that HeterMPC outperforms various baseline models for response generation in MPCs.

pdf
TegTok: Augmenting Text Generation via Task-specific and Open-world Knowledge
Chao-Hong Tan | Jia-Chen Gu | Chongyang Tao | Zhen-Hua Ling | Can Xu | Huang Hu | Xiubo Geng | Daxin Jiang
Findings of the Association for Computational Linguistics: ACL 2022

Generating natural and informative texts has been a long-standing problem in NLP. Much effort has been dedicated into incorporating pre-trained language models (PLMs) with various open-world knowledge, such as knowledge graphs or wiki pages. However, their ability to access and manipulate the task-specific knowledge is still limited on downstream tasks, as this type of knowledge is usually not well covered in PLMs and is hard to acquire. To address the problem, we propose augmenting TExt Generation via Task-specific and Open-world Knowledge (TegTok) in a unified framework. Our model selects knowledge entries from two types of knowledge sources through dense retrieval and then injects them into the input encoding and output decoding stages respectively on the basis of PLMs. With the help of these two types of knowledge, our model can learn what and how to generate. Experiments on two text generation tasks of dialogue generation and question generation, and on two datasets show that our method achieves better performance than various baseline models.