Chang Mu


2022

pdf
The Xiaomi Text-to-Text Simultaneous Speech Translation System for IWSLT 2022
Bao Guo | Mengge Liu | Wen Zhang | Hexuan Chen | Chang Mu | Xiang Li | Jianwei Cui | Bin Wang | Yuhang Guo
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

This system paper describes the Xiaomi Translation System for the IWSLT 2022 Simultaneous Speech Translation (noted as SST) shared task. We participate in the English-to-Mandarin Chinese Text-to-Text (noted as T2T) track. Our system is built based on the Transformer model with novel techniques borrowed from our recent research work. For the data filtering, language-model-based and rule-based methods are conducted to filter the data to obtain high-quality bilingual parallel corpora. We also strengthen our system with some dominating techniques related to data augmentation, such as knowledge distillation, tagged back-translation, and iterative back-translation. We also incorporate novel training techniques such as R-drop, deep model, and large batch training which have been shown to be beneficial to the naive Transformer model. In the SST scenario, several variations of extttwait-k strategies are explored. Furthermore, in terms of robustness, both data-based and model-based ways are used to reduce the sensitivity of our system to Automatic Speech Recognition (ASR) outputs. We finally design some inference algorithms and use the adaptive-ensemble method based on multiple model variants to further improve the performance of the system. Compared with strong baselines, fusing all techniques can improve our system by 2 extasciitilde3 BLEU scores under different latency regimes.

2020

pdf
Improving Grammatical Error Correction with Machine Translation Pairs
Wangchunshu Zhou | Tao Ge | Chang Mu | Ke Xu | Furu Wei | Ming Zhou
Findings of the Association for Computational Linguistics: EMNLP 2020

We propose a novel data synthesis method to generate diverse error-corrected sentence pairs for improving grammatical error correction, which is based on a pair of machine translation models (e.g., Chinese to English) of different qualities (i.e., poor and good). The poor translation model can resemble the ESL (English as a second language) learner and tends to generate translations of low quality in terms of fluency and grammaticality, while the good translation model generally generates fluent and grammatically correct translations. With the pair of translation models, we can generate unlimited numbers of poor to good English sentence pairs from text in the source language (e.g., Chinese) of the translators. Our approach can generate various error-corrected patterns and nicely complement the other data synthesis approaches for GEC. Experimental results demonstrate the data generated by our approach can effectively help a GEC model to improve the performance and achieve the state-of-the-art single-model performance in BEA-19 and CoNLL-14 benchmark datasets.