Bruce Bassett
2022
COMET-QE and Active Learning for Low-Resource Machine Translation
Everlyn Chimoto
|
Bruce Bassett
Findings of the Association for Computational Linguistics: EMNLP 2022
Active learning aims to deliver maximum benefit when resources are scarce. We use COMET-QE, a reference-free evaluation metric, to select sentences for low-resource neural machine translation. Using Swahili, Kinyarwanda and Spanish for our experiments, we show that COMET-QE significantly outperforms two variants of Round Trip Translation Likelihood (RTTL) and random sentence selection by up to 5 BLEU points for 20k sentences selected by Active Learning on a 30k baseline. This suggests that COMET-QE is a powerful tool for sentence selection in the very low-resource limit.
Very Low Resource Sentence Alignment: Luhya and Swahili
Everlyn Chimoto
|
Bruce Bassett
Proceedings of the Fifth Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2022)
Language-agnostic sentence embeddings generated by pre-trained models such as LASER and LaBSE are attractive options for mining large datasets to produce parallel corpora for low-resource machine translation. We test LASER and LaBSE in extracting bitext for two related low-resource African languages: Luhya and Swahili. For this work, we created a new parallel set of nearly 8000 Luhya-English sentences which allows a new zero-shot test of LASER and LaBSE. We find that LaBSE significantly outperforms LASER on both languages. Both LASER and LaBSE however perform poorly at zero-shot alignment on Luhya, achieving just 1.5% and 22.0% successful alignments respectively (P@1 score). We fine-tune the embeddings on a small set of parallel Luhya sentences and show significant gains, improving the LaBSE alignment accuracy to 53.3%. Further, restricting the dataset to sentence embedding pairs with cosine similarity above 0.7 yielded alignments with over 85% accuracy.
Search