Bohong Wu


2022

pdf
Sentence-aware Contrastive Learning for Open-Domain Passage Retrieval
Bohong Wu | Zhuosheng Zhang | Jinyuan Wang | Hai Zhao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Training dense passage representations via contrastive learning has been shown effective for Open-Domain Passage Retrieval (ODPR). Existing studies focus on further optimizing by improving negative sampling strategy or extra pretraining. However, these studies keep unknown in capturing passage with internal representation conflicts from improper modeling granularity. Specifically, under our observation that a passage can be organized by multiple semantically different sentences, modeling such a passage as a unified dense vector is not optimal. This work thus presents a refined model on the basis of a smaller granularity, contextual sentences, to alleviate the concerned conflicts. In detail, we introduce an in-passage negative sampling strategy to encourage a diverse generation of sentence representations within the same passage. Experiments on three benchmark datasets verify the efficacy of our method, especially on datasets where conflicts are severe. Extensive experiments further present good transferability of our method across datasets.

pdf
Sentence Representation Learning with Generative Objective rather than Contrastive Objective
Bohong Wu | Hai Zhao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Though offering amazing contextualized token-level representations, current pre-trained language models take less attention on accurately acquiring sentence-level representation during their self-supervised pre-training. However, contrastive objectives which dominate the current sentence representation learning bring little linguistic interpretability and no performance guarantee on downstream semantic tasks. We instead propose a novel generative self-supervised learning objective based on phrase reconstruction. To overcome the drawbacks of previous generative methods, we carefully model intra-sentence structure by breaking down one sentence into pieces of important phrases. Empirical studies show that our generative learning achieves powerful enough performance improvement and outperforms the current state-of-the-art contrastive methods not only on the STS benchmarks, but also on downstream semantic retrieval and reranking tasks. Our code is available at https://github.com/chengzhipanpan/PaSeR.