Bo-Hsiang Tseng


Knowledge-Aware Graph-Enhanced GPT-2 for Dialogue State Tracking
Weizhe Lin | Bo-Hsiang Tseng | Bill Byrne
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Dialogue State Tracking is central to multi-domain task-oriented dialogue systems, responsible for extracting information from user utterances. We present a novel hybrid architecture that augments GPT-2 with representations derived from Graph Attention Networks in such a way to allow causal, sequential prediction of slot values. The model architecture captures inter-slot relationships and dependencies across domains that otherwise can be lost in sequential prediction. We report improvements in state tracking performance in MultiWOZ 2.0 against a strong GPT-2 baseline and investigate a simplified sparse training scenario in which DST models are trained only on session-level annotations but evaluated at the turn level. We further report detailed analyses to demonstrate the effectiveness of graph models in DST by showing that the proposed graph modules capture inter-slot dependencies and improve the predictions of values that are common to multiple domains.

pdf bib
GCDF1: A Goal- and Context- Driven F-Score for Evaluating User Models
Alexandru Coca | Bo-Hsiang Tseng | Bill Byrne
The First Workshop on Evaluations and Assessments of Neural Conversation Systems

The evaluation of dialogue systems in interaction with simulated users has been proposed to improve turn-level, corpus-based metrics which can only evaluate test cases encountered in a corpus and cannot measure system’s ability to sustain multi-turn interactions. Recently, little emphasis was put on automatically assessing the quality of the user model itself, so unless correlations with human studies are measured, the reliability of user model based evaluation is unknown. We propose GCDF1, a simple but effective measure of the quality of semantic-level conversations between a goal-driven user agent and a system agent. In contrast with previous approaches we measure the F-score at dialogue level and consider user and system behaviours to improve recall and precision estimation. We facilitate scores interpretation by providing a rich hierarchical structure with information about conversational patterns present in the test data and tools to efficiently query the conversations generated. We apply our framework to assess the performance and weaknesses of a Convlab2 user model.

Transferable Dialogue Systems and User Simulators
Bo-Hsiang Tseng | Yinpei Dai | Florian Kreyssig | Bill Byrne
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

One of the difficulties in training dialogue systems is the lack of training data. We explore the possibility of creating dialogue data through the interaction between a dialogue system and a user simulator. Our goal is to develop a modelling framework that can incorporate new dialogue scenarios through self-play between the two agents. In this framework, we first pre-train the two agents on a collection of source domain dialogues, which equips the agents to converse with each other via natural language. With further fine-tuning on a small amount of target domain data, the agents continue to interact with the aim of improving their behaviors using reinforcement learning with structured reward functions. In experiments on the MultiWOZ dataset, two practical transfer learning problems are investigated: 1) domain adaptation and 2) single-to-multiple domain transfer. We demonstrate that the proposed framework is highly effective in bootstrapping the performance of the two agents in transfer learning. We also show that our method leads to improvements in dialogue system performance on complete datasets.

CREAD: Combined Resolution of Ellipses and Anaphora in Dialogues
Bo-Hsiang Tseng | Shruti Bhargava | Jiarui Lu | Joel Ruben Antony Moniz | Dhivya Piraviperumal | Lin Li | Hong Yu
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Anaphora and ellipses are two common phenomena in dialogues. Without resolving referring expressions and information omission, dialogue systems may fail to generate consistent and coherent responses. Traditionally, anaphora is resolved by coreference resolution and ellipses by query rewrite. In this work, we propose a novel joint learning framework of modeling coreference resolution and query rewriting for complex, multi-turn dialogue understanding. Given an ongoing dialogue between a user and a dialogue assistant, for the user query, our joint learning model first predicts coreference links between the query and the dialogue context, and then generates a self-contained rewritten user query. To evaluate our model, we annotate a dialogue based coreference resolution dataset, MuDoCo, with rewritten queries. Results show that the performance of query rewrite can be substantially boosted (+2.3% F1) with the aid of coreference modeling. Furthermore, our joint model outperforms the state-of-the-art coreference resolution model (+2% F1) on this dataset.


Actor-Double-Critic: Incorporating Model-Based Critic for Task-Oriented Dialogue Systems
Yen-chen Wu | Bo-Hsiang Tseng | Milica Gasic
Findings of the Association for Computational Linguistics: EMNLP 2020

In order to improve the sample-efficiency of deep reinforcement learning (DRL), we implemented imagination augmented agent (I2A) in spoken dialogue systems (SDS). Although I2A achieves a higher success rate than baselines by augmenting predicted future into a policy network, its complicated architecture introduces unwanted instability. In this work, we propose actor-double-critic (ADC) to improve the stability and overall performance of I2A. ADC simplifies the architecture of I2A to reduce excessive parameters and hyper-parameters. More importantly, a separate model-based critic shares parameters between actions and makes back-propagation explicit. In our experiments on Cambridge Restaurant Booking task, ADC enhances success rates considerably and shows robustness to imperfect environment models. In addition, ADC exhibits the stability and sample-efficiency as significantly reducing the baseline standard deviation of success rates and reaching the 80% success rate with half training data.

A Generative Model for Joint Natural Language Understanding and Generation
Bo-Hsiang Tseng | Jianpeng Cheng | Yimai Fang | David Vandyke
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Natural language understanding (NLU) and natural language generation (NLG) are two fundamental and related tasks in building task-oriented dialogue systems with opposite objectives: NLU tackles the transformation from natural language to formal representations, whereas NLG does the reverse. A key to success in either task is parallel training data which is expensive to obtain at a large scale. In this work, we propose a generative model which couples NLU and NLG through a shared latent variable. This approach allows us to explore both spaces of natural language and formal representations, and facilitates information sharing through the latent space to eventually benefit NLU and NLG. Our model achieves state-of-the-art performance on two dialogue datasets with both flat and tree-structured formal representations. We also show that the model can be trained in a semi-supervised fashion by utilising unlabelled data to boost its performance.


Tree-Structured Semantic Encoder with Knowledge Sharing for Domain Adaptation in Natural Language Generation
Bo-Hsiang Tseng | Paweł Budzianowski | Yen-chen Wu | Milica Gasic
Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue

Domain adaptation in natural language generation (NLG) remains challenging because of the high complexity of input semantics across domains and limited data of a target domain. This is particularly the case for dialogue systems, where we want to be able to seamlessly include new domains into the conversation. Therefore, it is crucial for generation models to share knowledge across domains for the effective adaptation from one domain to another. In this study, we exploit a tree-structured semantic encoder to capture the internal structure of complex semantic representations required for multi-domain dialogues in order to facilitate knowledge sharing across domains. In addition, a layer-wise attention mechanism between the tree encoder and the decoder is adopted to further improve the model’s capability. The automatic evaluation results show that our model outperforms previous methods in terms of the BLEU score and the slot error rate, in particular when the adaptation data is limited. In subjective evaluation, human judges tend to prefer the sentences generated by our model, rating them more highly on informativeness and naturalness than other systems.

Semi-Supervised Bootstrapping of Dialogue State Trackers for Task-Oriented Modelling
Bo-Hsiang Tseng | Marek Rei | Paweł Budzianowski | Richard Turner | Bill Byrne | Anna Korhonen
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Dialogue systems benefit greatly from optimizing on detailed annotations, such as transcribed utterances, internal dialogue state representations and dialogue act labels. However, collecting these annotations is expensive and time-consuming, holding back development in the area of dialogue modelling. In this paper, we investigate semi-supervised learning methods that are able to reduce the amount of required intermediate labelling. We find that by leveraging un-annotated data instead, the amount of turn-level annotations of dialogue state can be significantly reduced when building a neural dialogue system. Our analysis on the MultiWOZ corpus, covering a range of domains and topics, finds that annotations can be reduced by up to 30% while maintaining equivalent system performance. We also describe and evaluate the first end-to-end dialogue model created for the MultiWOZ corpus.


MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling
Paweł Budzianowski | Tsung-Hsien Wen | Bo-Hsiang Tseng | Iñigo Casanueva | Stefan Ultes | Osman Ramadan | Milica Gašić
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Even though machine learning has become the major scene in dialogue research community, the real breakthrough has been blocked by the scale of data available.To address this fundamental obstacle, we introduce the Multi-Domain Wizard-of-Oz dataset (MultiWOZ), a fully-labeled collection of human-human written conversations spanning over multiple domains and topics.At a size of 10k dialogues, it is at least one order of magnitude larger than all previous annotated task-oriented corpora.The contribution of this work apart from the open-sourced dataset is two-fold:firstly, a detailed description of the data collection procedure along with a summary of data structure and analysis is provided. The proposed data-collection pipeline is entirely based on crowd-sourcing without the need of hiring professional annotators;secondly, a set of benchmark results of belief tracking, dialogue act and response generation is reported, which shows the usability of the data and sets a baseline for future studies.

Feudal Reinforcement Learning for Dialogue Management in Large Domains
Iñigo Casanueva | Paweł Budzianowski | Pei-Hao Su | Stefan Ultes | Lina M. Rojas-Barahona | Bo-Hsiang Tseng | Milica Gašić
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

Reinforcement learning (RL) is a promising approach to solve dialogue policy optimisation. Traditional RL algorithms, however, fail to scale to large domains due to the curse of dimensionality. We propose a novel Dialogue Management architecture, based on Feudal RL, which decomposes the decision into two steps; a first step where a master policy selects a subset of primitive actions, and a second step where a primitive action is chosen from the selected subset. The structural information included in the domain ontology is used to abstract the dialogue state space, taking the decisions at each step using different parts of the abstracted state. This, combined with an information sharing mechanism between slots, increases the scalability to large domains. We show that an implementation of this approach, based on Deep-Q Networks, significantly outperforms previous state of the art in several dialogue domains and environments, without the need of any additional reward signal.

Addressing Objects and Their Relations: The Conversational Entity Dialogue Model
Stefan Ultes | Paweł Budzianowski | Iñigo Casanueva | Lina M. Rojas-Barahona | Bo-Hsiang Tseng | Yen-Chen Wu | Steve Young | Milica Gašić
Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue

Statistical spoken dialogue systems usually rely on a single- or multi-domain dialogue model that is restricted in its capabilities of modelling complex dialogue structures, e.g., relations. In this work, we propose a novel dialogue model that is centred around entities and is able to model relations as well as multiple entities of the same type. We demonstrate in a prototype implementation benefits of relation modelling on the dialogue level and show that a trained policy using these relations outperforms the multi-domain baseline. Furthermore, we show that by modelling the relations on the dialogue level, the system is capable of processing relations present in the user input and even learns to address them in the system response.

Feudal Dialogue Management with Jointly Learned Feature Extractors
Iñigo Casanueva | Paweł Budzianowski | Stefan Ultes | Florian Kreyssig | Bo-Hsiang Tseng | Yen-chen Wu | Milica Gašić
Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue

Reinforcement learning (RL) is a promising dialogue policy optimisation approach, but traditional RL algorithms fail to scale to large domains. Recently, Feudal Dialogue Management (FDM), has shown to increase the scalability to large domains by decomposing the dialogue management decision into two steps, making use of the domain ontology to abstract the dialogue state in each step. In order to abstract the state space, however, previous work on FDM relies on handcrafted feature functions. In this work, we show that these feature functions can be learned jointly with the policy model while obtaining similar performance, even outperforming the handcrafted features in several environments and domains.

Variational Cross-domain Natural Language Generation for Spoken Dialogue Systems
Bo-Hsiang Tseng | Florian Kreyssig | Paweł Budzianowski | Iñigo Casanueva | Yen-Chen Wu | Stefan Ultes | Milica Gašić
Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue

Cross-domain natural language generation (NLG) is still a difficult task within spoken dialogue modelling. Given a semantic representation provided by the dialogue manager, the language generator should generate sentences that convey desired information. Traditional template-based generators can produce sentences with all necessary information, but these sentences are not sufficiently diverse. With RNN-based models, the diversity of the generated sentences can be high, however, in the process some information is lost. In this work, we improve an RNN-based generator by considering latent information at the sentence level during generation using conditional variational auto-encoder architecture. We demonstrate that our model outperforms the original RNN-based generator, while yielding highly diverse sentences. In addition, our model performs better when the training data is limited.

Deep learning for language understanding of mental health concepts derived from Cognitive Behavioural Therapy
Lina M. Rojas-Barahona | Bo-Hsiang Tseng | Yinpei Dai | Clare Mansfield | Osman Ramadan | Stefan Ultes | Michael Crawford | Milica Gašić
Proceedings of the Ninth International Workshop on Health Text Mining and Information Analysis

In recent years, we have seen deep learning and distributed representations of words and sentences make impact on a number of natural language processing tasks, such as similarity, entailment and sentiment analysis. Here we introduce a new task: understanding of mental health concepts derived from Cognitive Behavioural Therapy (CBT). We define a mental health ontology based on the CBT principles, annotate a large corpus where this phenomena is exhibited and perform understanding using deep learning and distributed representations. Our results show that the performance of deep learning models combined with word embeddings or sentence embeddings significantly outperform non-deep-learning models in this difficult task. This understanding module will be an essential component of a statistical dialogue system delivering therapy.