Binh Nguyen


Multi-level Community-awareness Graph Neural Networks for Neural Machine Translation
Binh Nguyen | Long Nguyen | Dien Dinh
Proceedings of the 29th International Conference on Computational Linguistics

Neural Machine Translation (NMT) aims to translate the source- to the target-language while preserving the original meaning. Linguistic information such as morphology, syntactic, and semantics shall be grasped in token embeddings to produce a high-quality translation. Recent works have leveraged the powerful Graph Neural Networks (GNNs) to encode such language knowledge into token embeddings. Specifically, they use a trained parser to construct semantic graphs given sentences and then apply GNNs. However, most semantic graphs are tree-shaped and too sparse for GNNs which cause the over-smoothing problem. To alleviate this problem, we propose a novel Multi-level Community-awareness Graph Neural Network (MC-GNN) layer to jointly model local and global relationships between words and their linguistic roles in multiple communities. Intuitively, the MC-GNN layer substitutes a self-attention layer at the encoder side of a transformer-based machine translation model. Extensive experiments on four language-pair datasets with common evaluation metrics show the remarkable improvements of our method while reducing the time complexity in very long sentences.