Generative dialogue models suffer badly from the generic response problem, limiting their applications to a few toy scenarios. Recently, an interesting approach, namely negative training, has been proposed to alleviate this problem by reminding the model not to generate high-frequency responses during training. However, its performance is hindered by two issues, ignoring low-frequency but generic responses and bringing low-frequency but meaningless responses. In this paper, we propose a novel negative training paradigm, called negative distillation, to keep the model away from the undesirable generic responses while avoiding the above problems. First, we introduce a negative teacher model that can produce query-wise generic responses, and then the student model is required to maximize the distance with multi-level negative knowledge. Empirical results show that our method outperforms previous negative training methods significantly.
This paper introduces the approach of VPAI_Lab team’s experiments on BioNLP 2022 shared task 1 Medical Video Classification (MedVidCL). Given an input video, the MedVidCL task aims to correctly classify it into one of three following categories: Medical Instructional, Medical Non-instructional, and Non-medical. Inspired by its dataset construction process, we divide the classification process into two stages. The first stage is to classify videos into medical videos and non-medical videos. In the second stage, for those samples classified as medical videos, we further classify them into instructional videos and non-instructional videos. In addition, we also propose the cross-modal fusion method to solve the video classification, such as fusing the text features (question and subtitles) from the pre-training language models and visual features from image frames. Specifically, we use textual information to concatenate and query the visual information for obtaining better feature representation. Extensive experiments show that the proposed method significantly outperforms the official baseline method by 15.4% in the F1 score, which shows its effectiveness. Finally, the online results show that our method ranks the Top-1 on the online unseen test set. All the experimental codes are open-sourced at https://github.com/Lireanstar/MedVidCL.
Complex dialogue mappings (CDM), including one-to-many and many-to-one mappings, tend to make dialogue models generate incoherent or dull responses, and modeling these mappings remains a huge challenge for neural dialogue systems. To alleviate these problems, methods like introducing external information, reconstructing the optimization function, and manipulating data samples are proposed, while they primarily focus on avoiding training with CDM, inevitably weakening the model’s ability of understanding CDM in human conversations and limiting further improvements in model performance. This paper proposes a Sentence Semantic Segmentation guided Conditional Variational Auto-Encoder (SegCVAE) method which can model and take advantages of the CDM data. Specifically, to tackle the incoherent problem caused by one-to-many, SegCVAE uses response-related prominent semantics to constrained the latent variable. To mitigate the non-diverse problem brought by many-to-one, SegCVAE segments multiple prominent semantics to enrich the latent variables. Three novel components, Internal Separation, External Guidance, and Semantic Norms, are proposed to achieve SegCVAE. On dialogue generation tasks, both the automatic and human evaluation results show that SegCVAE achieves new state-of-the-art performance.
The medical conversational system can relieve doctors’ burden and improve healthcare efficiency, especially during the COVID-19 pandemic. However, the existing medical dialogue systems have the problems of weak scalability, insufficient knowledge, and poor controllability. Thus, we propose a medical conversational question-answering (CQA) system based on the knowledge graph, namely MedConQA, which is designed as a pipeline framework to maintain high flexibility. Our system utilizes automated medical procedures, including medical triage, consultation, image-text drug recommendation, and record. Each module has been open-sourced as a tool, which can be used alone or in combination, with robust scalability. Besides, to conduct knowledge-grounded dialogues with users, we first construct a Chinese Medical Knowledge Graph (CMKG) and collect a large-scale Chinese Medical CQA (CMCQA) dataset, and we design a series of methods for reasoning more intellectually. Finally, we use several state-of-the-art (SOTA) techniques to keep the final generated response more controllable, which is further assured by hospital and professional evaluations. We have open-sourced related code, datasets, web pages, and tools, hoping to advance future research.
Emotion is the essential attribute of human beings. Perceiving and understanding emotions in a human-like manner is the most central part of developing emotional intelligence. This paper describes the contribution of the LingJing team’s method to the Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis (WASSA) 2022 shared task on Emotion Classification. The participants are required to predict seven emotions from empathic responses to news or stories that caused harm to individuals, groups, or others. This paper describes the continual pre-training method for the masked language model (MLM) to enhance the DeBERTa pre-trained language model. Several training strategies are designed to further improve the final downstream performance including the data augmentation with the supervised transfer, child-tuning training, and the late fusion method. Extensive experiments on the emotional classification dataset show that the proposed method outperforms other state-of-the-art methods, demonstrating our method’s effectiveness. Moreover, our submission ranked Top-1 with all metrics in the evaluation phase for the Emotion Classification task.
This paper describes the LingJing team’s method to the Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis (WASSA) 2022 shared task on Personality Prediction (PER) and Reactivity Index Prediction (IRI). In this paper, we adopt the prompt-based method with the pre-trained language model to accomplish these tasks. Specifically, the prompt is designed to provide knowledge of the extra personalized information for enhancing the pre-trained model. Data augmentation and model ensemble are adopted for obtaining better results. Extensive experiments are performed, which shows the effectiveness of the proposed method. On the final submission, our system achieves a Pearson Correlation Coefficient of 0.2301 and 0.2546 on Track 3 and Track 4 respectively. We ranked 1-st on both sub-tasks.
This paper introduces the approach of Team LingJing’s experiments on SemEval-2022 Task 1 Comparing Dictionaries and Word Embeddings (CODWOE). This task aims at comparing two types of semantic descriptions and including two sub-tasks: the definition modeling and reverse dictionary track. Our team focuses on the reverse dictionary track and adopts the multi-task self-supervised pre-training for multilingual reverse dictionaries. Specifically, the randomly initialized mDeBERTa-base model is used to perform multi-task pre-training on the multilingual training datasets. The pre-training step is divided into two stages, namely the MLM pre-training stage and the contrastive pre-training stage. The experimental results show that the proposed method has achieved good performance in the reverse dictionary track, where we rank the 1-st in the Sgns targets of the EN and RU languages. All the experimental codes are open-sourced at https://github.com/WENGSYX/Semeval.
This paper presents the results and main findings of our system on SemEval-2022 Task 3 Presupposed Taxonomies: Evaluating Neural Network Semantics (PreTENS). This task aims at semantic competence with specific attention on the evaluation of language models, which is a task with respect to the recognition of appropriate taxonomic relations between two nominal arguments. Two sub-tasks including binary classification and regression are designed for the evaluation. For the classification sub-task, we adopt the DeBERTa-v3 pre-trained model for fine-tuning datasets of different languages. Due to the small size of the training datasets of the regression sub-task, we transfer the knowledge of classification model (i.e., model parameters) to the regression task. The experimental results show that the proposed method achieves the best results on both sub-tasks. Meanwhile, we also report negative results of multiple training strategies for further discussion. All the experimental codes are open-sourced at https://github.com/WENGSYX/Semeval.
Conditional Variational AutoEncoder (CVAE) effectively increases the diversity and informativeness of responses in open-ended dialogue generation tasks through enriching the context vector with sampled latent variables. However, due to the inherent one-to-many and many-to-one phenomena in human dialogues, the sampled latent variables may not correctly reflect the contexts’ semantics, leading to irrelevant and incoherent generated responses. To resolve this problem, we propose Self-separated Conditional Variational AutoEncoder (abbreviated as SepaCVAE) that introduces group information to regularize the latent variables, which enhances CVAE by improving the responses’ relevance and coherence while maintaining their diversity and informativeness. SepaCVAE actively divides the input data into groups, and then widens the absolute difference between data pairs from distinct groups, while narrowing the relative distance between data pairs in the same group. Empirical results from automatic evaluation and detailed analysis demonstrate that SepaCVAE can significantly boost responses in well-established open-domain dialogue datasets.
Human dialogues are scenario-based and appropriate responses generally relate to the latent context knowledge entailed by the specific scenario. To enable responses that are more meaningful and context-specific, we propose to improve generative dialogue systems from the scenario perspective, where both dialogue history and future conversation are taken into account to implicitly reconstruct the scenario knowledge. More importantly, the conversation scenarios are further internalized using imitation learning framework, where the conventional dialogue model that has no access to future conversations is effectively regularized by transferring the scenario knowledge contained in hierarchical supervising signals from the scenario-based dialogue model, so that the future conversation is not required in actual inference. Extensive evaluations show that our approach significantly outperforms state-of-the-art baselines on diversity and relevance, and expresses scenario-specific knowledge.