Transformer has been demonstrated effective in Neural Machine Translation (NMT). However, it is memory-consuming and time-consuming in edge devices, resulting in some difficulties for real-time feedback. To compress and accelerate Transformer, we propose a Hybrid Tensor-Train (HTT) decomposition, which retains full rank and meanwhile reduces operations and parameters. A Transformer using HTT, named Hypoformer, consistently and notably outperforms the recent light-weight SOTA methods on three standard translation tasks under different parameter and speed scales. In extreme low resource scenarios, Hypoformer has 7.1 points absolute improvement in BLEU and 1.27 X speedup than vanilla Transformer on IWSLT’14 De-En task.
Deep prompt tuning (DPT) has gained great success in most natural language processing (NLP) tasks. However, it is not well-investigated in dense retrieval where fine-tuning (FT) still dominates. When deploying multiple retrieval tasks using the same backbone model (e.g., RoBERTa), FT-based methods are unfriendly in terms of deployment cost: each new retrieval model needs to repeatedly deploy the backbone model without reuse. To reduce the deployment cost in such a scenario, this work investigates applying DPT in dense retrieval. The challenge is that directly applying DPT in dense retrieval largely underperforms FT methods. To compensate for the performance drop, we propose two model-agnostic and task-agnostic strategies for DPT-based retrievers, namely retrieval-oriented intermediate pretraining and unified negative mining, as a general approach that could be compatible with any pre-trained language model and retrieval task. The experimental results show that the proposed method (called DPTDR) outperforms previous state-of-the-art models on both MS-MARCO and Natural Questions. We also conduct ablation studies to examine the effectiveness of each strategy in DPTDR. We believe this work facilitates the industry, as it saves enormous efforts and costs of deployment and increases the utility of computing resources. Our code is available at https://github.com/tangzhy/DPTDR.
Sarcasm and sentiment embody intrinsic uncertainty of human cognition, making joint detection of multi-modal sarcasm and sentiment a challenging task. In view of the advantages of quantum probability (QP) in modeling such uncertainty, this paper explores the potential of QP as a mathematical framework and proposes a QP driven multi-task (QPM) learning framework. The QPM framework involves a complex-valued multi-modal representation encoder, a quantum-like fusion subnetwork and a quantum measurement mechanism. Each multi-modal (e.g., textual, visual) utterance is first encoded as a quantum superposition of a set of basis terms using a complex-valued representation. Then, the quantum-like fusion subnetwork leverages quantum state composition and quantum interference to model the contextual interaction between adjacent utterances and the correlations across modalities respectively. Finally, quantum incompatible measurements are performed on the multi-modal representation of each utterance to yield the probabilistic outcomes of sarcasm and sentiment recognition. The experimental results show that our model achieves a state-of-the-art performance.
The state-of-the-art Aspect-based Sentiment Analysis (ABSA) approaches are mainly based on either detecting aspect terms and their corresponding sentiment polarities, or co-extracting aspect and opinion terms. However, the extraction of aspect-sentiment pairs lacks opinion terms as a reference, while co-extraction of aspect and opinion terms would not lead to meaningful pairs without determining their sentiment dependencies. To address the issue, we present a novel view of ABSA as an opinion triplet extraction task, and propose a multi-task learning framework to jointly extract aspect terms and opinion terms, and simultaneously parses sentiment dependencies between them with a biaffine scorer. At inference phase, the extraction of triplets is facilitated by a triplet decoding method based on the above outputs. We evaluate the proposed framework on four SemEval benchmarks for ASBA. The results demonstrate that our approach significantly outperforms a range of strong baselines and state-of-the-art approaches.
This paper seeks to model human language by the mathematical framework of quantum physics. With the well-designed mathematical formulations in quantum physics, this framework unifies different linguistic units in a single complex-valued vector space, e.g. words as particles in quantum states and sentences as mixed systems. A complex-valued network is built to implement this framework for semantic matching. With well-constrained complex-valued components, the network admits interpretations to explicit physical meanings. The proposed complex-valued network for matching (CNM) achieves comparable performances to strong CNN and RNN baselines on two benchmarking question answering (QA) datasets.
A challenging task for word embeddings is to capture the emergent meaning or polarity of a combination of individual words. For example, existing approaches in word embeddings will assign high probabilities to the words “Penguin” and “Fly” if they frequently co-occur, but it fails to capture the fact that they occur in an opposite sense - Penguins do not fly. We hypothesize that humans do not associate a single polarity or sentiment to each word. The word contributes to the overall polarity of a combination of words depending upon which other words it is combined with. This is analogous to the behavior of microscopic particles which exist in all possible states at the same time and interfere with each other to give rise to new states depending upon their relative phases. We make use of the Hilbert Space representation of such particles in Quantum Mechanics where we subscribe a relative phase to each word, which is a complex number, and investigate two such quantum inspired models to derive the meaning of a combination of words. The proposed models achieve better performances than state-of-the-art non-quantum models on binary sentence classification tasks.