In this paper, we define the task of gender rewriting in contexts involving two users (I and/or You) – first and second grammatical persons with independent grammatical gender preferences. We focus on Arabic, a gender-marking morphologically rich language. We develop a multi-step system that combines the positive aspects of both rule-based and neural rewriting models. Our results successfully demonstrate the viability of this approach on a recently created corpus for Arabic gender rewriting, achieving 88.42 M2 F0.5 on a blind test set. Our proposed system improves over previous work on the first-person-only version of this task, by 3.05 absolute increase in M2 F0.5. We demonstrate a use case of our gender rewriting system by using it to post-edit the output of a commercial MT system to provide personalized outputs based on the users’ grammatical gender preferences. We make our code, data, and pretrained models publicly available.
Gender bias in natural language processing (NLP) applications, particularly machine translation, has been receiving increasing attention. Much of the research on this issue has focused on mitigating gender bias in English NLP models and systems. Addressing the problem in poorly resourced, and/or morphologically rich languages has lagged behind, largely due to the lack of datasets and resources. In this paper, we introduce a new corpus for gender identification and rewriting in contexts involving one or two target users (I and/or You) – first and second grammatical persons with independent grammatical gender preferences. We focus on Arabic, a gender-marking morphologically rich language. The corpus has multiple parallel components: four combinations of 1st and 2nd person in feminine and masculine grammatical genders, as well as English, and English to Arabic machine translation output. This corpus expands on Habash et al. (2019)’s Arabic Parallel Gender Corpus (APGC v1.0) by adding second person targets as well as increasing the total number of sentences over 6.5 times, reaching over 590K words. Our new dataset will aid the research and development of gender identification, controlled text generation, and post-editing rewrite systems that could be used to personalize NLP applications and provide users with the correct outputs based on their grammatical gender preferences. We make the Arabic Parallel Gender Corpus (APGC v2.0) publicly available
In this paper, we present the results and findings of the Shared Task on Gender Rewriting, which was organized as part of the Seventh Arabic Natural Language Processing Workshop. The task of gender rewriting refers to generating alternatives of a given sentence to match different target user gender contexts (e.g., a female speaker with a male listener, a male speaker with a male listener, etc.). This requires changing the grammatical gender (masculine or feminine) of certain words referring to the users. In this task, we focus on Arabic, a gender-marking morphologically rich language. A total of five teams from four countries participated in the shared task.
Social media has increasingly played a key role in emergency response: first responders can use public posts to better react to ongoing crisis events and deploy the necessary resources where they are most needed. Timeline extraction and abstractive summarization are critical technical tasks to leverage large numbers of social media posts about events. Unfortunately, there are few datasets for benchmarking technical approaches for those tasks. This paper presents , the largest dataset of local crisis event timelines available to date. contains 1,000 crisis event timelines across four domains: wildfires, local fires, traffic, and storms. We built using a semi-automated cluster-then-refine approach to collect data from the public Twitter stream. Our initial experiments indicate a significant gap between the performance of strong baselines compared to the human performance on both tasks.Our dataset, code, and models are publicly available (https://github.com/CrisisLTLSum/CrisisTimelines).
This demo paper presents a Google Docs add-on for automatic Arabic word-level readability visualization. The add-on includes a lemmatization component that is connected to a five-level readability lexicon and Arabic WordNet-based substitution suggestions. The add-on can be used for assessing the reading difficulty of a text and identifying difficult words as part of the task of manual text simplification. We make our add-on and its code publicly available.
In this paper, we explore the effects of language variants, data sizes, and fine-tuning task types in Arabic pre-trained language models. To do so, we build three pre-trained language models across three variants of Arabic: Modern Standard Arabic (MSA), dialectal Arabic, and classical Arabic, in addition to a fourth language model which is pre-trained on a mix of the three. We also examine the importance of pre-training data size by building additional models that are pre-trained on a scaled-down set of the MSA variant. We compare our different models to each other, as well as to eight publicly available models by fine-tuning them on five NLP tasks spanning 12 datasets. Our results suggest that the variant proximity of pre-training data to fine-tuning data is more important than the pre-training data size. We exploit this insight in defining an optimized system selection model for the studied tasks.
In this paper, we present an approach for sentence-level gender reinflection using linguistically enhanced sequence-to-sequence models. Our system takes an Arabic sentence and a given target gender as input and generates a gender-reinflected sentence based on the target gender. We formulate the problem as a user-aware grammatical error correction task and build an encoder-decoder architecture to jointly model reinflection for both masculine and feminine grammatical genders. We also show that adding linguistic features to our model leads to better reinflection results. The results on a blind test set using our best system show improvements over previous work, with a 3.6% absolute increase in M2 F0.5.
We present CAMeL Tools, a collection of open-source tools for Arabic natural language processing in Python. CAMeL Tools currently provides utilities for pre-processing, morphological modeling, Dialect Identification, Named Entity Recognition and Sentiment Analysis. In this paper, we describe the design of CAMeL Tools and the functionalities it provides.