Semantic typing aims at classifying tokens or spans of interest in a textual context into semantic categories such as relations, entity types, and event types. The inferred labels of semantic categories meaningfully interpret how machines understand components of text. In this paper, we present UniST, a unified framework for semantic typing that captures label semantics by projecting both inputs and labels into a joint semantic embedding space. To formulate different lexical and relational semantic typing tasks as a unified task, we incorporate task descriptions to be jointly encoded with the input, allowing UniST to be adapted to different tasks without introducing task-specific model components. UniST optimizes a margin ranking loss such that the semantic relatedness of the input and labels is reflected from their embedding similarity. Our experiments demonstrate that UniST achieves strong performance across three semantic typing tasks: entity typing, relation classification and event typing. Meanwhile, UniST effectively transfers semantic knowledge of labels and substantially improves generalizability on inferring rarely seen and unseen types. In addition, multiple semantic typing tasks can be jointly trained within the unified framework, leading to a single compact multi-tasking model that performs comparably to dedicated single-task models, while offering even better transferability.
Entity typing aims at predicting one or more words that describe the type(s) of a specific mention in a sentence. Due to shortcuts from surface patterns to annotated entity labels and biased training, existing entity typing models are subject to the problem of spurious correlations. To comprehensively investigate the faithfulness and reliability of entity typing methods, we first systematically define distinct kinds of model biases that are reflected mainly from spurious correlations. Particularly, we identify six types of existing model biases, including mention-context bias, lexical overlapping bias, named entity bias, pronoun bias, dependency bias, and overgeneralization bias. To mitigate model biases, we then introduce a counterfactual data augmentation method. By augmenting the original training set with their debiasedcounterparts, models are forced to fully comprehend sentences and discover the fundamental cues for entity typing, rather than relying on spurious correlations for shortcuts. Experimental results on the UFET dataset show our counterfactual data augmentation approach helps improve generalization of different entity typing models with consistently better performance on both the original and debiased test sets.
The task of ultra-fine entity typing (UFET) seeks to predict diverse and free-form words or phrases that describe the appropriate types of entities mentioned in sentences. A key challenge for this task lies in the large number of types and the scarcity of annotated data per type. Existing systems formulate the task as a multi-way classification problem and train directly or distantly supervised classifiers. This causes two issues: (i) the classifiers do not capture the type semantics because types are often converted into indices; (ii) systems developed in this way are limited to predicting within a pre-defined type set, and often fall short of generalizing to types that are rarely seen or unseen in training. This work presents LITE🍻, a new approach that formulates entity typing as a natural language inference (NLI) problem, making use of (i) the indirect supervision from NLI to infer type information meaningfully represented as textual hypotheses and alleviate the data scarcity issue, as well as (ii) a learning-to-rank objective to avoid the pre-defining of a type set. Experiments show that, with limited training data, LITE obtains state-of-the-art performance on the UFET task. In addition, LITE demonstrates its strong generalizability by not only yielding best results on other fine-grained entity typing benchmarks, more importantly, a pre-trained LITE system works well on new data containing unseen types.1
To combat COVID-19, both clinicians and scientists need to digest the vast amount of relevant biomedical knowledge in literature to understand the disease mechanism and the related biological functions. We have developed a novel and comprehensive knowledge discovery framework, COVID-KG to extract fine-grained multimedia knowledge elements (entities, relations and events) from scientific literature. We then exploit the constructed multimedia knowledge graphs (KGs) for question answering and report generation, using drug repurposing as a case study. Our framework also provides detailed contextual sentences, subfigures, and knowledge subgraphs as evidence. All of the data, KGs, reports.