Atilla Kaan Alkan


2022

pdf
TDAC, The First Corpus in Time-Domain Astrophysics: Analysis and First Experiments on Named Entity Recognition
Atilla Kaan Alkan | Cyril Grouin | Fabian Schussler | Pierre Zweigenbaum
Proceedings of the first Workshop on Information Extraction from Scientific Publications

The increased interest in time-domain astronomy over the last decades has resulted in a substantial increase in observation reports publication leading to a saturation of how astrophysicists read, analyze and classify information. Due to the short life span of the detected astronomical events, the information related to the characterization of new phenomena has to be communicated and analyzed very rapidly to allow other observatories to react and conduct their follow-up observations. This paper introduces TDAC: the first Corpus in Time-Domain Astrophysics, based on observation reports. We also present the NLP experiments we made for named entity recognition based on annotations we made and annotations from the WIESP NLP Challenge.

pdf
A Majority Voting Strategy of a SciBERT-based Ensemble Models for Detecting Entities in the Astrophysics Literature (Shared Task)
Atilla Kaan Alkan | Cyril Grouin | Fabian Schussler | Pierre Zweigenbaum
Proceedings of the first Workshop on Information Extraction from Scientific Publications

Detecting Entities in the Astrophysics Literature (DEAL) is a proposed shared task in the scope of the first Workshop on Information Extraction from Scientific Publications (WIESP) at AACL-IJCNLP 2022. It aims to propose systems identifying astrophysical named entities. This article presents our system based on a majority voting strategy of an ensemble composed of multiple SciBERT models. The system we propose is ranked second and outperforms the baseline provided by the organisers by achieving an F1 score of 0.7993 and a Matthews Correlation Coefficient (MCC) score of 0.8978 in the testing phase.