We present the findings of the shared task at the CONSTRAINT 2022 Workshop: Hero, Villain, and Victim: Dissecting harmful memes for Semantic role labeling of entities. The task aims to delve deeper into the domain of meme comprehension by deciphering the connotations behind the entities present in a meme. In more nuanced terms, the shared task focuses on determining the victimizing, glorifying, and vilifying intentions embedded in meme entities to explicate their connotations. To this end, we curate HVVMemes, a novel meme dataset of about 7000 memes spanning the domains of COVID-19 and US Politics, each containing entities and their associated roles: hero, villain, victim, or none. The shared task attracted 105 participants, but eventually only 6 submissions were made. Most of the successful submissions relied on fine-tuning pre-trained language and multimodal models along with ensembles. The best submission achieved an F1-score of 58.67.
Indirect speech such as sarcasm achieves a constellation of discourse goals in human communication. While the indirectness of figurative language warrants speakers to achieve certain pragmatic goals, it is challenging for AI agents to comprehend such idiosyncrasies of human communication. Though sarcasm identification has been a well-explored topic in dialogue analysis, for conversational systems to truly grasp a conversation’s innate meaning and generate appropriate responses, simply detecting sarcasm is not enough; it is vital to explain its underlying sarcastic connotation to capture its true essence. In this work, we study the discourse structure of sarcastic conversations and propose a novel task – Sarcasm Explanation in Dialogue (SED). Set in a multimodal and code-mixed setting, the task aims to generate natural language explanations of satirical conversations. To this end, we curate WITS, a new dataset to support our task. We propose MAF (Modality Aware Fusion), a multimodal context-aware attention and global information fusion module to capture multimodality and use it to benchmark WITS. The proposed attention module surpasses the traditional multimodal fusion baselines and reports the best performance on almost all metrics. Lastly, we carry out detailed analysis both quantitatively and qualitatively.
The widespread diffusion of medical and political claims in the wake of COVID-19 has led to a voluminous rise in misinformation and fake news. The current vogue is to employ manual fact-checkers to efficiently classify and verify such data to combat this avalanche of claim-ridden misinformation. However, the rate of information dissemination is such that it vastly outpaces the fact-checkers’ strength. Therefore, to aid manual fact-checkers in eliminating the superfluous content, it becomes imperative to automatically identify and extract the snippets of claim-worthy (mis)information present in a post. In this work, we introduce the novel task of Claim Span Identification (CSI). We propose CURT, a large-scale Twitter corpus with token-level claim spans on more than 7.5k tweets. Furthermore, along with the standard token classification baselines, we benchmark our dataset with DABERTa, an adapter-based variation of RoBERTa. The experimental results attest that DABERTa outperforms the baseline systems across several evaluation metrics, improving by about 1.5 points. We also report detailed error analysis to validate the model’s performance along with the ablation studies. Lastly, we release our comprehensive span annotation guidelines for public use.
With mental health as a problem domain in NLP, the bulk of contemporary literature revolves around building better mental illness prediction models. The research focusing on the identification of discussion clusters in online mental health communities has been relatively limited. Moreover, as the underlying methodologies used in these studies mainly conform to the traditional machine learning models and statistical methods, the scope for introducing contextualized word representations for topic and theme extraction from online mental health communities remains open. Thus, in this research, we propose topic-infused deep contextualized representations, a novel data representation technique that uses autoencoders to combine deep contextual embeddings with topical information, generating robust representations for text clustering. Investigating the Reddit discourse on Post-Traumatic Stress Disorder (PTSD) and Complex Post-Traumatic Stress Disorder (C-PTSD), we elicit the thematic clusters representing the latent topics and themes discussed in the r/ptsd and r/CPTSD subreddits. Furthermore, we also present a qualitative analysis and characterization of each cluster, unraveling the prevalent discourse themes.
Active research pertaining to the affective phenomenon of empathy and distress is invaluable for improving human-machine interaction. Predicting intensities of such complex emotions from textual data is difficult, as these constructs are deeply rooted in the psychological theory. Consequently, for better prediction, it becomes imperative to take into account ancillary factors such as the psychological test scores, demographic features, underlying latent primitive emotions, along with the text’s undertone and its psychological complexity. This paper proffers team PVG’s solution to the WASSA 2021 Shared Task on Predicting Empathy and Emotion in Reaction to News Stories. Leveraging the textual data, demographic features, psychological test score, and the intrinsic interdependencies of primitive emotions and empathy, we propose a multi-input, multi-task framework for the task of empathy score prediction. Here, the empathy score prediction is considered the primary task, while emotion and empathy classification are considered secondary auxiliary tasks. For the distress score prediction task, the system is further boosted by the addition of lexical features. Our submission ranked 1st based on the average correlation (0.545) as well as the distress correlation (0.574), and 2nd for the empathy Pearson correlation (0.517).
Sentiment analysis is one of the most fundamental tasks in Natural Language Processing. Popular languages like English, Arabic, Russian, Mandarin, and also Indian languages such as Hindi, Bengali, Tamil have seen a significant amount of work in this area. However, the Marathi language which is the third most popular language in India still lags behind due to the absence of proper datasets. In this paper, we present the first major publicly available Marathi Sentiment Analysis Dataset - L3CubeMahaSent. It is curated using tweets extracted from various Maharashtrian personalities’ Twitter accounts. Our dataset consists of ~16,000 distinct tweets classified in three broad classes viz. positive, negative, and neutral. We also present the guidelines using which we annotated the tweets. Finally, we present the statistics of our dataset and baseline classification results using CNN, LSTM, ULMFiT, and BERT based models.
The recent surge of complex attention-based deep learning architectures has led to extraordinary results in various downstream NLP tasks in the English language. However, such research for resource-constrained and morphologically rich Indian vernacular languages has been relatively limited. This paper proffers a solution for the TechDOfication 2020 subtask-1f: which focuses on the coarse-grained technical domain identification of short text documents in Marathi, a Devanagari script-based Indian language. Availing the large dataset at hand, a hybrid CNN-BiLSTM attention ensemble model is proposed that competently combines the intermediate sentence representations generated by the convolutional neural network and the bidirectional long short-term memory, leading to efficient text classification. Experimental results show that the proposed model outperforms various baseline machine learning and deep learning models in the given task, giving the best validation accuracy of 89.57% and f1-score of 0.8875. Furthermore, the solution resulted in the best system submission for this subtask, giving a test accuracy of 64.26% and f1-score of 0.6157, transcending the performances of other teams as well as the baseline system given by the organizers of the shared task.