Arnold Overwijk


COCO-DR: Combating the Distribution Shift in Zero-Shot Dense Retrieval with Contrastive and Distributionally Robust Learning
Yue Yu | Chenyan Xiong | Si Sun | Chao Zhang | Arnold Overwijk
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

We present a new zero-shot dense retrieval (ZeroDR) method, COCO-DR, to improve the generalization ability of dense retrieval by combating the distribution shifts between source training tasks and target scenarios. To mitigate the impact of document differences, COCO-DR continues pretraining the language model on the target corpora to adapt the model to target distributions via COtinuous COtrastive learning. To prepare for unseen target queries, COCO-DR leverages implicit Distributionally Robust Optimization (iDRO) to reweight samples from different source query clusters for improving model robustness over rare queries during fine-tuning. COCO-DR achieves superior average performance on BEIR, the zero-shot retrieval benchmark. At BERT_Base scale, COCO-DR Base outperforms other ZeroDR models with 60x larger size. At BERT_Large scale, COCO-DR Large outperforms the giant GPT-3 embedding model which has 500x more parameters. Our analysis shows the correlation between COCO-DR’s effectiveness in combating distribution shifts and improving zero-shot accuracy. Our code and model can be found at

Reduce Catastrophic Forgetting of Dense Retrieval Training with Teleportation Negatives
Si Sun | Chenyan Xiong | Yue Yu | Arnold Overwijk | Zhiyuan Liu | Jie Bao
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

In this paper, we investigate the instability in the standard dense retrieval training, which iterates between model training and hard negative selection using the being-trained model. We show the catastrophic forgetting phenomena behind the training instability, where models learn and forget different negative groups during training iterations. We then propose ANCE-Tele, which accumulates momentum negatives from past iterations and approximates future iterations using lookahead negatives, as “teleportations” along the time axis to smooth the learning process. On web search and OpenQA, ANCE-Tele outperforms previous state-of-the-art systems of similar size, eliminates the dependency on sparse retrieval negatives, and is competitive among systems using significantly more (50x) parameters. Our analysis demonstrates that teleportation negatives reduce catastrophic forgetting and improve convergence speed for dense retrieval training. The source code of this paper is available at


Less is More: Pretrain a Strong Siamese Encoder for Dense Text Retrieval Using a Weak Decoder
Shuqi Lu | Di He | Chenyan Xiong | Guolin Ke | Waleed Malik | Zhicheng Dou | Paul Bennett | Tie-Yan Liu | Arnold Overwijk
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Dense retrieval requires high-quality text sequence embeddings to support effective search in the representation space. Autoencoder-based language models are appealing in dense retrieval as they train the encoder to output high-quality embedding that can reconstruct the input texts. However, in this paper, we provide theoretical analyses and show empirically that an autoencoder language model with a low reconstruction loss may not provide good sequence representations because the decoder may take shortcuts by exploiting language patterns. To address this, we propose a new self-learning method that pre-trains the autoencoder using a weak decoder, with restricted capacity and attention flexibility to push the encoder to provide better text representations. Our experiments on web search, news recommendation, and open domain question answering show that our pre-trained model significantly boosts the effectiveness and few-shot ability of dense retrieval models. Our code is available at


Open Domain Web Keyphrase Extraction Beyond Language Modeling
Lee Xiong | Chuan Hu | Chenyan Xiong | Daniel Campos | Arnold Overwijk
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

This paper studies keyphrase extraction in real-world scenarios where documents are from diverse domains and have variant content quality. We curate and release OpenKP, a large scale open domain keyphrase extraction dataset with near one hundred thousand web documents and expert keyphrase annotations. To handle the variations of domain and content quality, we develop BLING-KPE, a neural keyphrase extraction model that goes beyond language understanding using visual presentations of documents and weak supervision from search queries. Experimental results on OpenKP confirm the effectiveness of BLING-KPE and the contributions of its neural architecture, visual features, and search log weak supervision. Zero-shot evaluations on DUC-2001 demonstrate the improved generalization ability of learning from the open domain data compared to a specific domain.