Anthony Rios


2022

pdf
Mitigating Data Shift of Biomedical Research Articles for Information Retrieval and Semantic Indexing
Nima Ebadi | Anthony Rios | Peyman Najafirad
Proceedings of the Third Workshop on Scholarly Document Processing

Researchers have explored novel methods for both semantic indexing and information retrieval of biomedical research articles. Moreover, most solutions treat each task independently. However, both tasks are related. For instance, semantic indexes are generally used to filter results from an information retrieval system. Hence, one task can potentially improve the performance of models trained for the other task. Thus, this study proposes a unified retriever-ranker-based model to tackle the tasks of information retrieval (IR) and semantic indexing (SI). Particularly, our proposed model can adapt to rapid shifts in scientific research. Our results show that the model effectively leverages task similarity to improve the robustness to dataset shift. For SI, the Micro f1 score increases by 8% and the LCA-F score improves by 5%. For IR, the MAP increases by 5% on average.

pdf
Linguistic Elements of Engaging Customer Service Discourse on Social Media
Sonam Singh | Anthony Rios
Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (NLP+CSS)

Customers are rapidly turning to social media for customer support. While brand agents on these platforms are motivated and well-intentioned to help and engage with customers, their efforts are often ignored if their initial response to the customer does not match a specific tone, style, or topic the customer is aiming to receive. The length of a conversation can reflect the effort and quality of the initial response made by a brand toward collaborating and helping consumers, even when the overall sentiment of the conversation might not be very positive. Thus, through this study, we aim to bridge this critical gap in the existing literature by analyzing language’s content and stylistic aspects such as expressed empathy, psycho-linguistic features, dialogue tags, and metrics for quantifying personalization of the utterances that can influence the engagement of an interaction. This paper demonstrates that we can predict engagement using initial customer and brand posts.

pdf
UTSA NLP at SemEval-2022 Task 4: An Exploration of Simple Ensembles of Transformers, Convolutional, and Recurrent Neural Networks
Xingmeng Zhao | Anthony Rios
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

The act of appearing kind or helpful via the use of but having a feeling of superiority condescending and patronizing language can have have serious mental health implications to those that experience it. Thus, detecting this condescending and patronizing language online can be useful for online moderation systems. Thus, in this manuscript, we describe the system developed by Team UTSA SemEval-2022 Task 4, Detecting Patronizing and Condescending Language. Our approach explores the use of several deep learning architectures including RoBERTa, convolutions neural networks, and Bidirectional Long Short-Term Memory Networks. Furthermore, we explore simple and effective methods to create ensembles of neural network models. Overall, we experimented with several ensemble models and found that the a simple combination of five RoBERTa models achieved an F-score of .6441 on the development dataset and .5745 on the final test dataset. Finally, we also performed a comprehensive error analysis to better understand the limitations of the model and provide ideas for further research.

pdf
Measuring Geographic Performance Disparities of Offensive Language Classifiers
Brandon Lwowski | Paul Rad | Anthony Rios
Proceedings of the 29th International Conference on Computational Linguistics

Text classifiers are applied at scale in the form of one-size-fits-all solutions. Nevertheless, many studies show that classifiers are biased regarding different languages and dialects. When measuring and discovering these biases, some gaps present themselves and should be addressed. First, “Does language, dialect, and topical content vary across geographical regions?” and secondly “If there are differences across the regions, do they impact model performance?”. We introduce a novel dataset called GeoOLID with more than 14 thousand examples across 15 geographically and demographically diverse cities to address these questions. We perform a comprehensive analysis of geographical-related content and their impact on performance disparities of offensive language detection models. Overall, we find that current models do not generalize across locations. Likewise, we show that while offensive language models produce false positives on African American English, model performance is not correlated with each city’s minority population proportions. Warning: This paper contains offensive language.

2021

pdf
Detecting Bot-Generated Text by Characterizing Linguistic Accommodation in Human-Bot Interactions
Paras Bhatt | Anthony Rios
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
Quantifying 60 Years of Gender Bias in Biomedical Research with Word Embeddings
Anthony Rios | Reenam Joshi | Hejin Shin
Proceedings of the 19th SIGBioMed Workshop on Biomedical Language Processing

Gender bias in biomedical research can have an adverse impact on the health of real people. For example, there is evidence that heart disease-related funded research generally focuses on men. Health disparities can form between men and at-risk groups of women (i.e., elderly and low-income) if there is not an equal number of heart disease-related studies for both genders. In this paper, we study temporal bias in biomedical research articles by measuring gender differences in word embeddings. Specifically, we address multiple questions, including, How has gender bias changed over time in biomedical research, and what health-related concepts are the most biased? Overall, we find that traditional gender stereotypes have reduced over time. However, we also find that the embeddings of many medical conditions are as biased today as they were 60 years ago (e.g., concepts related to drug addiction and body dysmorphia).

pdf
An Empirical Study of the Downstream Reliability of Pre-Trained Word Embeddings
Anthony Rios | Brandon Lwowski
Proceedings of the 28th International Conference on Computational Linguistics

While pre-trained word embeddings have been shown to improve the performance of downstream tasks, many questions remain regarding their reliability: Do the same pre-trained word embeddings result in the best performance with slight changes to the training data? Do the same pre-trained embeddings perform well with multiple neural network architectures? Do imputation strategies for unknown words impact reliability? In this paper, we introduce two new metrics to understand the downstream reliability of word embeddings. We find that downstream reliability of word embeddings depends on multiple factors, including, the evaluation metric, the handling of out-of-vocabulary words, and whether the embeddings are fine-tuned.

2019

pdf
How Many Users Are Enough? Exploring Semi-Supervision and Stylometric Features to Uncover a Russian Troll Farm
Nayeema Nasrin | Kim-Kwang Raymond Choo | Myung Ko | Anthony Rios
Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda

Social media has reportedly been (ab)used by Russian troll farms to promote political agendas. Specifically, state-affiliated actors disguise themselves as native citizens of the United States to promote discord and promote their political motives. Therefore, developing methods to automatically detect Russian trolls can ensure fair elections and possibly reduce political extremism by stopping trolls that produce discord. While data exists for some troll organizations (e.g., Internet Research Agency), it is challenging to collect ground-truth accounts for new troll farms in a timely fashion. In this paper, we study the impact the number of labeled troll accounts has on detection performance. We analyze the use of self-supervision with less than 100 troll accounts as training data. We improve classification performance by nearly 4% F1. Furthermore, in combination with self-supervision, we also explore novel features for troll detection grounded in stylometry. Intuitively, we assume that the writing style is consistent across troll accounts because a single troll organization employee may control multiple user accounts. Overall, we improve on models based on words features by ~9% F1.

2018

pdf
Few-Shot and Zero-Shot Multi-Label Learning for Structured Label Spaces
Anthony Rios | Ramakanth Kavuluru
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Large multi-label datasets contain labels that occur thousands of times (frequent group), those that occur only a few times (few-shot group), and labels that never appear in the training dataset (zero-shot group). Multi-label few- and zero-shot label prediction is mostly unexplored on datasets with large label spaces, especially for text classification. In this paper, we perform a fine-grained evaluation to understand how state-of-the-art methods perform on infrequent labels. Furthermore, we develop few- and zero-shot methods for multi-label text classification when there is a known structure over the label space, and evaluate them on two publicly available medical text datasets: MIMIC II and MIMIC III. For few-shot labels we achieve improvements of 6.2% and 4.8% in R@10 for MIMIC II and MIMIC III, respectively, over prior efforts; the corresponding R@10 improvements for zero-shot labels are 17.3% and 19%.

pdf
EMR Coding with Semi-Parametric Multi-Head Matching Networks
Anthony Rios | Ramakanth Kavuluru
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

Coding EMRs with diagnosis and procedure codes is an indispensable task for billing, secondary data analyses, and monitoring health trends. Both speed and accuracy of coding are critical. While coding errors could lead to more patient-side financial burden and misinterpretation of a patient’s well-being, timely coding is also needed to avoid backlogs and additional costs for the healthcare facility. In this paper, we present a new neural network architecture that combines ideas from few-shot learning matching networks, multi-label loss functions, and convolutional neural networks for text classification to significantly outperform other state-of-the-art models. Our evaluations are conducted using a well known de-identified EMR dataset (MIMIC) with a variety of multi-label performance measures.

pdf
Predicting Psychological Health from Childhood Essays with Convolutional Neural Networks for the CLPsych 2018 Shared Task (Team UKNLP)
Anthony Rios | Tung Tran | Ramakanth Kavuluru
Proceedings of the Fifth Workshop on Computational Linguistics and Clinical Psychology: From Keyboard to Clinic

This paper describes the systems we developed for tasks A and B of the 2018 CLPsych shared task. The first task (task A) focuses on predicting behavioral health scores at age 11 using childhood essays. The second task (task B) asks participants to predict future psychological distress at ages 23, 33, 42, and 50 using the age 11 essays. We propose two convolutional neural network based methods that map each task to a regression problem. Among seven teams we ranked third on task A with disattenuated Pearson correlation (DPC) score of 0.5587. Likewise, we ranked third on task B with an average DPC score of 0.3062.