Ankush Chopra


Multilingual Financial Documentation Summarization by Team_Tredence for FNS2022
Manish Pant | Ankush Chopra
Proceedings of the 4th Financial Narrative Processing Workshop @LREC2022

This paper describes multi-lingual long document summarization systems submitted to the Financial Narrative Summarization Shared Task (FNS 2022 ) by Team-Tredence. We developed task-specific summarization methods for 3 languages – English, Spanish and Greek. The solution is divided into two parts, where a RoBERTa model was finetuned to identify/extract summarizing segments from English documents and T5 based models were used for summarizing Spanish and Greek documents. A purely extractive approach was applied to summarize English documents using data-specific heuristics. An mT5 model was fine-tuned to identify potential narrative sections for Greek and Spanish, followed by finetuning mT5 and T5(Spanish version) for abstractive summarization task. This system also features a novel approach for generating summarization training dataset using long document segmentation and the semantic similarity across segments. We also introduce an N-gram variability score to select sub-segments for generating more diverse and informative summaries from long documents.


pdf bib
Data Driven Content Creation using Statistical and Natural Language Processing Techniques for Financial Domain
Ankush Chopra | Sohom Ghosh | Prateek Nagwanshi
Proceedings of the 3rd Financial Narrative Processing Workshop

Term Expansion and FinBERT fine-tuning for Hypernym and Synonym Ranking of Financial Terms
Ankush Chopra | Sohom Ghosh
Proceedings of the Third Workshop on Financial Technology and Natural Language Processing