Anjie Fang


2022

pdf
Dynamic Gazetteer Integration in Multilingual Models for Cross-Lingual and Cross-Domain Named Entity Recognition
Besnik Fetahu | Anjie Fang | Oleg Rokhlenko | Shervin Malmasi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Named entity recognition (NER) in a real-world setting remains challenging and is impacted by factors like text genre, corpus quality, and data availability. NER models trained on CoNLL do not transfer well to other domains, even within the same language. This is especially the case for multi-lingual models when applied to low-resource languages, and is mainly due to missing entity information. We propose an approach that with limited effort and data, addresses the NER knowledge gap across languages and domains. Our novel approach uses a token-level gating layer to augment pre-trained multilingual transformers with gazetteers containing named entities (NE) from a target language or domain.This approach provides the flexibility to jointly integrate both textual and gazetteer information dynamically: entity knowledge from gazetteers is used only when a token’s textual representation is insufficient for the NER task.Evaluation on several languages and domains demonstrates: (i) a high mismatch of reported NER performance on CoNLL vs. domain specific datasets, (ii) gazetteers significantly improve NER performance across languages and domains, and (iii) gazetteers can be flexibly incorporated to guide knowledge transfer. On cross-lingual transfer we achieve an improvement over the baseline with F1=+17.6%, and with F1=+21.3% for cross-domain transfer.

pdf
CycleKQR: Unsupervised Bidirectional Keyword-Question Rewriting
Andrea Iovine | Anjie Fang | Besnik Fetahu | Jie Zhao | Oleg Rokhlenko | Shervin Malmasi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Users expect their queries to be answered by search systems, regardless of the query’s surface form, which include keyword queries and natural questions. Natural Language Understanding (NLU) components of Search and QA systems may fail to correctly interpret semantically equivalent inputs if this deviates from how the system was trained, leading to suboptimal understanding capabilities. We propose the keyword-question rewriting task to improve query understanding capabilities of NLU systems for all surface forms. To achieve this, we present CycleKQR, an unsupervised approach, enabling effective rewriting between keyword and question queries using non-parallel data.Empirically we show the impact on QA performance of unfamiliar query forms for open domain and Knowledge Base QA systems (trained on either keywords or natural language questions). We demonstrate how CycleKQR significantly improves QA performance by rewriting queries into the appropriate form, while at the same time retaining the original semantic meaning of input queries, allowing CycleKQR to improve performance by up to 3% over supervised baselines. Finally, we release a datasetof 66k keyword-question pairs.

pdf
Reinforced Question Rewriting for Conversational Question Answering
Zhiyu Chen | Jie Zhao | Anjie Fang | Besnik Fetahu | Oleg Rokhlenko | Shervin Malmasi
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: Industry Track

Conversational Question Answering (CQA) aims to answer questions contained within dialogues, which are not easily interpretable without context. Developing a model to rewrite conversational questions into self-contained ones is an emerging solution in industry settings as it allows using existing single-turn QA systems to avoid training a CQA model from scratch. Previous work trains rewriting models using human rewrites as supervision. However, such objectives are disconnected with QA models and therefore more human-like rewrites do not guarantee better QA performance. In this paper we propose using QA feedback to supervise the rewriting model with reinforcement learning. Experiments show that our approach can effectively improve QA performance over baselines for both extractive and retrieval QA. Furthermore, human evaluation shows that our method can generate more accurate and detailed rewrites when compared to human annotations.

pdf
SemEval-2022 Task 11: Multilingual Complex Named Entity Recognition (MultiCoNER)
Shervin Malmasi | Anjie Fang | Besnik Fetahu | Sudipta Kar | Oleg Rokhlenko
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

We present the findings of SemEval-2022 Task 11 on Multilingual Complex Named Entity Recognition MULTICONER. Divided into 13 tracks, the task focused on methods to identify complex named entities (like names of movies, products and groups) in 11 languages in both monolingual and multi-lingual scenarios. Eleven tracks required building monolingual NER models for individual languages, one track focused on multilingual models able to work on all languages, and the last track featured code-mixed texts within any of these languages. The task is based on the MULTICONER dataset comprising of 2.3 millions instances in Bangla, Chinese, Dutch, English, Farsi, German, Hindi, Korean, Russian, Spanish, and Turkish. Results showed that methods fusing external knowledge into transformer models achieved the best results. However, identifying entities like creative works is still challenging even with external knowledge. MULTICONER was one of the most popular tasks in SemEval-2022 and it attracted 377 participants during the practice phase. 236 participants signed up for the final test phase and 55 teams submitted their systems.

pdf
MultiCoNER: A Large-scale Multilingual Dataset for Complex Named Entity Recognition
Shervin Malmasi | Anjie Fang | Besnik Fetahu | Sudipta Kar | Oleg Rokhlenko
Proceedings of the 29th International Conference on Computational Linguistics

We present AnonData, a large multilingual dataset for Named Entity Recognition that covers 3 domains (Wiki sentences, questions, and search queries) across 11 languages, as well as multilingual and code-mixing subsets. This dataset is designed to represent contemporary challenges in NER, including low-context scenarios (short and uncased text), syntactically complex entities like movie titles, and long-tail entity distributions. The 26M token dataset is compiled from public resources using techniques such as heuristic-based sentence sampling, template extraction and slotting, and machine translation. We tested the performance of two NER models on our dataset: a baseline XLM-RoBERTa model, and a state-of-the-art NER GEMNET model that leverages gazetteers. The baseline achieves moderate performance (macro-F1=54%). GEMNET, which uses gazetteers, improvement significantly (average improvement of macro-F1=+30%) and demonstrates the difficulty of our dataset. AnonData poses challenges even for large pre-trained language models, and we believe that it can help further research in building robust NER systems.

2021

pdf
GEMNET: Effective Gated Gazetteer Representations for Recognizing Complex Entities in Low-context Input
Tao Meng | Anjie Fang | Oleg Rokhlenko | Shervin Malmasi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Named Entity Recognition (NER) remains difficult in real-world settings; current challenges include short texts (low context), emerging entities, and complex entities (e.g. movie names). Gazetteer features can help, but results have been mixed due to challenges with adding extra features, and a lack of realistic evaluation data. It has been shown that including gazetteer features can cause models to overuse or underuse them, leading to poor generalization. We propose GEMNET, a novel approach for gazetteer knowledge integration, including (1) a flexible Contextual Gazetteer Representation (CGR) encoder that can be fused with any word-level model; and (2) a Mixture-of- Experts gating network that overcomes the feature overuse issue by learning to conditionally combine the context and gazetteer features, instead of assigning them fixed weights. To comprehensively evaluate our approaches, we create 3 large NER datasets (24M tokens) reflecting current challenges. In an uncased setting, our methods show large gains (up to +49% F1) in recognizing difficult entities compared to existing baselines. On standard benchmarks, we achieve a new uncased SOTA on CoNLL03 and WNUT17.