Ana Uban


2019

pdf
Studying Laws of Semantic Divergence across Languages using Cognate Sets
Ana Uban | Alina Maria Ciobanu | Liviu P. Dinu
Proceedings of the 1st International Workshop on Computational Approaches to Historical Language Change

Semantic divergence in related languages is a key concern of historical linguistics. Intra-lingual semantic shift has been previously studied in computational linguistics, but this can only provide a limited picture of the evolution of word meanings, which often develop in a multilingual environment. In this paper we investigate semantic change across languages by measuring the semantic distance of cognate words in multiple languages. By comparing current meanings of cognates in different languages, we hope to uncover information about their previous meanings, and about how they diverged in their respective languages from their common original etymon. We further study the properties of their semantic divergence, by analyzing how the features of words such as frequency and polysemy are related to the divergence in their meaning, and thus make the first steps towards formulating laws of cross-lingual semantic change.

pdf
The Myth of Double-Blind Review Revisited: ACL vs. EMNLP
Cornelia Caragea | Ana Uban | Liviu P. Dinu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The review and selection process for scientific paper publication is essential for the quality of scholarly publications in a scientific field. The double-blind review system, which enforces author anonymity during the review period, is widely used by prestigious conferences and journals to ensure the integrity of this process. Although the notion of anonymity in the double-blind review has been questioned before, the availability of full text paper collections brings new opportunities for exploring the question: Is the double-blind review process really double-blind? We study this question on the ACL and EMNLP paper collections and present an analysis on how well deep learning techniques can infer the authors of a paper. Specifically, we explore Convolutional Neural Networks trained on various aspects of a paper, e.g., content, style features, and references, to understand the extent to which we can infer the authors of a paper and what aspects contribute the most. Our results show that the authors of a paper can be inferred with accuracy as high as 87% on ACL and 78% on EMNLP for the top 100 most prolific authors.