Ali Elkahky


pdf bib
textless-lib: a Library for Textless Spoken Language Processing
Eugene Kharitonov | Jade Copet | Kushal Lakhotia | Tu Anh Nguyen | Paden Tomasello | Ann Lee | Ali Elkahky | Wei-Ning Hsu | Abdelrahman Mohamed | Emmanuel Dupoux | Yossi Adi
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations

Textless spoken language processing is an exciting area of research that promises to extend applicability of the standard NLP toolset onto spoken language and languages with few or no textual resources.Here, we introduce textless-lib, a PyTorch-based library aimed to facilitate research in the area. We describe the building blocks that the library provides and demonstrate its usability by discuss three different use-case examples: (i) speaker probing, (ii) speech resynthesis and compression, and (iii) speech continuation. We believe that textless-lib substantially simplifies research the textless setting and will be handful not only for speech researchers but also for the NLP community at large.


POS Tagging for Improving Code-Switching Identification in Arabic
Mohammed Attia | Younes Samih | Ali Elkahky | Hamdy Mubarak | Ahmed Abdelali | Kareem Darwish
Proceedings of the Fourth Arabic Natural Language Processing Workshop

When speakers code-switch between their native language and a second language or language variant, they follow a syntactic pattern where words and phrases from the embedded language are inserted into the matrix language. This paper explores the possibility of utilizing this pattern in improving code-switching identification between Modern Standard Arabic (MSA) and Egyptian Arabic (EA). We try to answer the question of how strong is the POS signal in word-level code-switching identification. We build a deep learning model enriched with linguistic features (including POS tags) that outperforms the state-of-the-art results by 1.9% on the development set and 1.0% on the test set. We also show that in intra-sentential code-switching, the selection of lexical items is constrained by POS categories, where function words tend to come more often from the dialectal language while the majority of content words come from the standard language.

Segmentation for Domain Adaptation in Arabic
Mohammed Attia | Ali Elkahky
Proceedings of the Fourth Arabic Natural Language Processing Workshop

Segmentation serves as an integral part in many NLP applications including Machine Translation, Parsing, and Information Retrieval. When a model trained on the standard language is applied to dialects, the accuracy drops dramatically. However, there are more lexical items shared by the standard language and dialects than can be found by mere surface word matching. This shared lexicon is obscured by a lot of cliticization, gemination, and character repetition. In this paper, we prove that segmentation and base normalization of dialects can help in domain adaptation by reducing data sparseness. Segmentation will improve a system performance by reducing the number of OOVs, help isolate the differences and allow better utilization of the commonalities. We show that adding a small amount of dialectal segmentation training data reduced OOVs by 5% and remarkably improves POS tagging for dialects by 7.37% f-score, even though no dialect-specific POS training data is included.


Multilingual Multi-class Sentiment Classification Using Convolutional Neural Networks
Mohammed Attia | Younes Samih | Ali Elkahky | Laura Kallmeyer
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

The Morpho-syntactic Annotation of Animacy for a Dependency Parser
Mohammed Attia | Vitaly Nikolaev | Ali Elkahky
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

A Challenge Set and Methods for Noun-Verb Ambiguity
Ali Elkahky | Kellie Webster | Daniel Andor | Emily Pitler
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

English part-of-speech taggers regularly make egregious errors related to noun-verb ambiguity, despite having achieved 97%+ accuracy on the WSJ Penn Treebank since 2002. These mistakes have been difficult to quantify and make taggers less useful to downstream tasks such as translation and text-to-speech synthesis. This paper creates a new dataset of over 30,000 naturally-occurring non-trivial examples of noun-verb ambiguity. Taggers within 1% of each other when measured on the WSJ have accuracies ranging from 57% to 75% accuracy on this challenge set. Enhancing the strongest existing tagger with contextual word embeddings and targeted training data improves its accuracy to 89%, a 14% absolute (52% relative) improvement. Downstream, using just this enhanced tagger yields a 28% reduction in error over the prior best learned model for homograph disambiguation for textto-speech synthesis.


pdf bib
CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies
Daniel Zeman | Martin Popel | Milan Straka | Jan Hajič | Joakim Nivre | Filip Ginter | Juhani Luotolahti | Sampo Pyysalo | Slav Petrov | Martin Potthast | Francis Tyers | Elena Badmaeva | Memduh Gokirmak | Anna Nedoluzhko | Silvie Cinková | Jan Hajič jr. | Jaroslava Hlaváčová | Václava Kettnerová | Zdeňka Urešová | Jenna Kanerva | Stina Ojala | Anna Missilä | Christopher D. Manning | Sebastian Schuster | Siva Reddy | Dima Taji | Nizar Habash | Herman Leung | Marie-Catherine de Marneffe | Manuela Sanguinetti | Maria Simi | Hiroshi Kanayama | Valeria de Paiva | Kira Droganova | Héctor Martínez Alonso | Çağrı Çöltekin | Umut Sulubacak | Hans Uszkoreit | Vivien Macketanz | Aljoscha Burchardt | Kim Harris | Katrin Marheinecke | Georg Rehm | Tolga Kayadelen | Mohammed Attia | Ali Elkahky | Zhuoran Yu | Emily Pitler | Saran Lertpradit | Michael Mandl | Jesse Kirchner | Hector Fernandez Alcalde | Jana Strnadová | Esha Banerjee | Ruli Manurung | Antonio Stella | Atsuko Shimada | Sookyoung Kwak | Gustavo Mendonça | Tatiana Lando | Rattima Nitisaroj | Josie Li
Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

The Conference on Computational Natural Language Learning (CoNLL) features a shared task, in which participants train and test their learning systems on the same data sets. In 2017, the task was devoted to learning dependency parsers for a large number of languages, in a real-world setting without any gold-standard annotation on input. All test sets followed a unified annotation scheme, namely that of Universal Dependencies. In this paper, we define the task and evaluation methodology, describe how the data sets were prepared, report and analyze the main results, and provide a brief categorization of the different approaches of the participating systems.