Insightful findings in political science often require researchers to analyze documents of a certain subject or type, yet these documents are usually contained in large corpora that do not distinguish between pertinent and non-pertinent documents. In contrast, we can find corpora that label relevant documents but have limitations (e.g., from a single source or era), preventing their use for political science research. To bridge this gap, we present adaptive ensembling, an unsupervised domain adaptation framework, equipped with a novel text classification model and time-aware training to ensure our methods work well with diachronic corpora. Experiments on an expert-annotated dataset show that our framework outperforms strong benchmarks. Further analysis indicates that our methods are more stable, learn better representations, and extract cleaner corpora for fine-grained analysis.
Diachronic distributional models track changes in word use over time. In this paper, we propose a deep neural network diachronic distributional model. Instead of modeling lexical change via a time series as is done in previous work, we represent time as a continuous variable and model a word’s usage as a function of time. Additionally, we have also created a novel synthetic task which measures a model’s ability to capture the semantic trajectory. This evaluation quantitatively measures how well a model captures the semantic trajectory of a word over time. Finally, we explore how well the derivatives of our model can be used to measure the speed of lexical change.