Hierarchical relationships are invaluable information for many natural language processing (NLP) tasks. Distributional representation has become a fundamental approach for encoding word relationships, particularly embeddings in hyperbolic space showed great performance in representing hierarchies by taking advantage of their spatial properties. However, most machine learning systems do not suppose to use in such complex non-Euclidean geometries. To achieve hierarchy representations in commonly used Euclidean space, we propose Polar Embedding that learns word embeddings with the polar coordinate system. Utilizing characteristics of polar coordinates, the hierarchy of words is expressed with two independent variables: radius (generality) and angles (similarity), and their variables are optimized separately. Polar embedding shows word hierarchies explicitly and allows us to use beneficial resources such as word frequencies or word generality annotations for computing radiuses. We introduce an optimization method for learning angles in limited ranges of polar coordinates, which combining a loss function controlling gradient and distribution uniformization. Experimental results on hypernymy datasets indicate that our approach outperforms other embeddings in low-dimensional Euclidean space and competitively performs even with hyperbolic embeddings, which possess a geometric advantage.
Deep reinforcement learning (RL) methods often require many trials before convergence, and no direct interpretability of trained policies is provided. In order to achieve fast convergence and interpretability for the policy in RL, we propose a novel RL method for text-based games with a recent neuro-symbolic framework called Logical Neural Network, which can learn symbolic and interpretable rules in their differentiable network. The method is first to extract first-order logical facts from text observation and external word meaning network (ConceptNet), then train a policy in the network with directly interpretable logical operators. Our experimental results show RL training with the proposed method converges significantly faster than other state-of-the-art neuro-symbolic methods in a TextWorld benchmark.
We present Logical Optimal Actions (LOA), an action decision architecture of reinforcement learning applications with a neuro-symbolic framework which is a combination of neural network and symbolic knowledge acquisition approach for natural language interaction games. The demonstration for LOA experiments consists of a web-based interactive platform for text-based games and visualization for acquired knowledge for improving interpretability for trained rules. This demonstration also provides a comparison module with other neuro-symbolic approaches as well as non-symbolic state-of-the-art agent models on the same text-based games. Our LOA also provides open-sourced implementation in Python for the reinforcement learning environment to facilitate an experiment for studying neuro-symbolic agents. Demo site: https://ibm.biz/acl21-loa, Code: https://github.com/ibm/loa
Unsupervised methods are promising for abstractive textsummarization in that the parallel corpora is not required. However, their performance is still far from being satisfied, therefore research on promising solutions is on-going. In this paper, we propose a new approach based on Q-learning with an edit-based summarization. The method combines two key modules to form an Editorial Agent and Language Model converter (EALM). The agent predicts edit actions (e.t., delete, keep, and replace), and then the LM converter deterministically generates a summary on the basis of the action signals. Q-learning is leveraged to train the agent to produce proper edit actions. Experimental results show that EALM delivered competitive performance compared with the previous encoder-decoder-based methods, even with truly zero paired data (i.e., no validation set). Defining the task as Q-learning enables us not only to develop a competitive method but also to make the latest techniques in reinforcement learning available for unsupervised summarization. We also conduct qualitative analysis, providing insights into future study on unsupervised summarizers.