Knowledge Graphs (KGs) are directed labeled graphs representing entities and the relationships between them. Most prior work focuses on supervised or semi-supervised approaches which require large amounts of annotated data. While unsupervised approaches do not need labeled training data, most existing methods either generate too many redundant relations or require manual mapping of the extracted relations to a known schema. To address these limitations, we propose an unsupervised method for KG generation that requires neither labeled data nor manual mapping to the predefined relation schema. Instead, our method leverages sentence-level semantic similarity for automatically generating relations between pairs of entities. Our proposed method outperforms two baseline systems when evaluated over four datasets.
Affective tasks such as sentiment analysis, emotion classification, and sarcasm detection have been popular in recent years due to an abundance of user-generated data, accurate computational linguistic models, and a broad range of relevant applications in various domains. At the same time, many studies have highlighted the importance of text preprocessing, as an integral step to any natural language processing prediction model and downstream task. While preprocessing in affective systems is well-studied, preprocessing in word vector-based models applied to affective systems, is not. To address this limitation, we conduct a comprehensive analysis of the role of preprocessing techniques in affective analysis based on word vector models. Our analysis is the first of its kind and provides useful insights of the importance of each preprocessing technique when applied at the training phase, commonly ignored in pretrained word vector models, and/or at the downstream task phase.
Automatic sarcasm detection from text is an important classification task that can help identify the actual sentiment in user-generated data, such as reviews or tweets. Despite its usefulness, sarcasm detection remains a challenging task, due to a lack of any vocal intonation or facial gestures in textual data. To date, most of the approaches to addressing the problem have relied on hand-crafted affect features, or pre-trained models of non-contextual word embeddings, such as Word2vec. However, these models inherit limitations that render them inadequate for the task of sarcasm detection. In this paper, we propose two novel deep neural network models for sarcasm detection, namely ACE 1 and ACE 2. Given as input a text passage, the models predict whether it is sarcastic (or not). Our models extend the architecture of BERT by incorporating both affective and contextual features. To the best of our knowledge, this is the first attempt to directly alter BERT’s architecture and train it from scratch to build a sarcasm classifier. Extensive experiments on different datasets demonstrate that the proposed models outperform state-of-the-art models for sarcasm detection with significant margins.
The article dwell time (i.e., expected time that users spend on an article) is among the most important factors showing the article engagement. It is of great interest to predict the dwell time of an article before its release. This allows digital newspapers to make informed decisions and publish more engaging articles. In this paper, we propose a novel content-based approach based on a deep neural network architecture for predicting article dwell times. The proposed model extracts emotion, event and entity features from an article, learns interactions among them, and combines the interactions with the word-based features of the article to learn a model for predicting the dwell time. The experimental results on a real dataset from a major newspaper show that the proposed model outperforms other state-of-the-art baselines.
Most word representation learning methods are based on the distributional hypothesis in linguistics, according to which words that are used and occur in the same contexts tend to possess similar meanings. As a consequence, emotionally dissimilar words, such as “happy” and “sad” occurring in similar contexts would purport more similar meaning than emotionally similar words, such as “happy” and “joy”. This complication leads to rather undesirable outcome in predictive tasks that relate to affect (emotional state), such as emotion classification and emotion similarity. In order to address this limitation, we propose a novel method of obtaining emotion-enriched word representations, which projects emotionally similar words into neighboring spaces and emotionally dissimilar ones far apart. The proposed approach leverages distant supervision to automatically obtain a large training dataset of text documents and two recurrent neural network architectures for learning the emotion-enriched representations. Through extensive evaluation on two tasks, including emotion classification and emotion similarity, we demonstrate that the proposed representations outperform several competitive general-purpose and affective word representations.
Emotion classification from text typically requires some degree of word-emotion association, either gathered from pre-existing emotion lexicons or calculated using some measure of semantic relatedness. Most emotion lexicons contain a fixed number of emotion categories and provide a rather limited coverage. Current measures of computing semantic relatedness, on the other hand, do not adapt well to the specific task of word-emotion association and therefore, yield average results. In this work, we propose an unsupervised method of learning word-emotion association from large text corpora, called Selective Co-occurrences (SECO), by leveraging the property of mutual exclusivity generally exhibited by emotions. Extensive evaluation, using just one seed word per emotion category, indicates the effectiveness of the proposed approach over three emotion lexicons and two state-of-the-art models of word embeddings on three datasets from different domains.