Afra Amini


On Parsing as Tagging
Afra Amini | Ryan Cotterell
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

There are many proposals to reduce constituency parsing to tagging. To figure out what these approaches have in common, we offer a unifying pipeline, which consists of three steps: linearization, learning, and decoding. We prove that classic shift–reduce parsing can be reduced to tetratagging—the state-of-the-art constituency tagger—under two assumptions: right-corner transformation in the linearization step and factored scoring in the learning step. We ask what is the most critical factor that makes parsing-as-tagging methods accurate while being efficient. To answer this question, we empirically evaluate a taxonomy of tagging pipelines with different choices of linearizers, learners, and decoders. Based on the results in English as well as a set of 8 typologically diverse languages, we conclude that the linearization of the derivation tree and its alignment with the input sequence is the most critical factor in achieving accurate parsers as taggers.


Conditional Poisson Stochastic Beams
Clara Meister | Afra Amini | Tim Vieira | Ryan Cotterell
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Beam search is the default decoding strategy for many sequence generation tasks in NLP. The set of approximate K-best items returned by the algorithm is a useful summary of the distribution for many applications; however, the candidates typically exhibit high overlap and may give a highly biased estimate for expectations under our model. These problems can be addressed by instead using stochastic decoding strategies. In this work, we propose a new method for turning beam search into a stochastic process: Conditional Poisson stochastic beam search. Rather than taking the maximizing set at each iteration, we sample K candidates without replacement according to the conditional Poisson sampling design. We view this as a more natural alternative to Kool et al. (2019)’s stochastic beam search (SBS). Furthermore, we show how samples generated under the CPSBS design can be used to build consistent estimators and sample diverse sets from sequence models. In our experiments, we observe CPSBS produces lower variance and more efficient estimators than SBS, even showing improvements in high entropy settings.