Adina Williams


2022

pdf
On the Machine Learning of Ethical Judgments from Natural Language
Zeerak Talat | Hagen Blix | Josef Valvoda | Maya Indira Ganesh | Ryan Cotterell | Adina Williams
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Ethics is one of the longest standing intellectual endeavors of humanity. In recent years, the fields of AI and NLP have attempted to address issues of harmful outcomes in machine learning systems that are made to interface with humans. One recent approach in this vein is the construction of NLP morality models that can take in arbitrary text and output a moral judgment about the situation described. In this work, we offer a critique of such NLP methods for automating ethical decision-making. Through an audit of recent work on computational approaches for predicting morality, we examine the broader issues that arise from such efforts. We conclude with a discussion of how machine ethics could usefully proceed in NLP, by focusing on current and near-future uses of technology, in a way that centers around transparency, democratic values, and allows for straightforward accountability.

pdf
ANLIzing the Adversarial Natural Language Inference Dataset
Adina Williams | Tristan Thrush | Douwe Kiela
Proceedings of the Society for Computation in Linguistics 2022

pdf
Investigating Failures of Automatic Translationin the Case of Unambiguous Gender
Adithya Renduchintala | Adina Williams
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Transformer-based models are the modern work horses for neural machine translation (NMT), reaching state of the art across several benchmarks. Despite their impressive accuracy, we observe a systemic and rudimentary class of errors made by current state-of-the-art NMT models with regards to translating from a language that doesn’t mark gender on nouns into others that do. We find that even when the surrounding context provides unambiguous evidence of the appropriate grammatical gender marking, no tested model was able to accurately gender occupation nouns systematically. We release an evaluation scheme and dataset for measuring the ability of NMT models to translate gender morphology correctly in unambiguous contexts across syntactically diverse sentences. Our dataset translates from an English source into 20 languages from several different language families. With the availability of this dataset, our hope is that the NMT community can iterate on solutions for this class of especially egregious errors.

pdf
Dynatask: A Framework for Creating Dynamic AI Benchmark Tasks
Tristan Thrush | Kushal Tirumala | Anmol Gupta | Max Bartolo | Pedro Rodriguez | Tariq Kane | William Gaviria Rojas | Peter Mattson | Adina Williams | Douwe Kiela
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We introduce Dynatask: an open source system for setting up custom NLP tasks that aims to greatly lower the technical knowledge and effort required for hosting and evaluating state-of-the-art NLP models, as well as for conducting model in the loop data collection with crowdworkers. Dynatask is integrated with Dynabench, a research platform for rethinking benchmarking in AI that facilitates human and model in the loop data collection and evaluation. To create a task, users only need to write a short task configuration file from which the relevant web interfaces and model hosting infrastructure are automatically generated. The system is available at https://dynabench.org/ and the full library can be found at https://github.com/facebookresearch/dynabench.

pdf
Analyzing Dynamic Adversarial Training Data in the Limit
Eric Wallace | Adina Williams | Robin Jia | Douwe Kiela
Findings of the Association for Computational Linguistics: ACL 2022

To create models that are robust across a wide range of test inputs, training datasets should include diverse examples that span numerous phenomena. Dynamic adversarial data collection (DADC), where annotators craft examples that challenge continually improving models, holds promise as an approach for generating such diverse training sets. Prior work has shown that running DADC over 1-3 rounds can help models fix some error types, but it does not necessarily lead to better generalization beyond adversarial test data. We argue that running DADC over many rounds maximizes its training-time benefits, as the different rounds can together cover many of the task-relevant phenomena. We present the first study of longer-term DADC, where we collect 20 rounds of NLI examples for a small set of premise paragraphs, with both adversarial and non-adversarial approaches. Models trained on DADC examples make 26% fewer errors on our expert-curated test set compared to models trained on non-adversarial data. Our analysis shows that DADC yields examples that are more difficult, more lexically and syntactically diverse, and contain fewer annotation artifacts compared to non-adversarial examples.

pdf
The Curious Case of Absolute Position Embeddings
Koustuv Sinha | Amirhossein Kazemnejad | Siva Reddy | Joelle Pineau | Dieuwke Hupkes | Adina Williams
Findings of the Association for Computational Linguistics: EMNLP 2022

Transformer language models encode the notion of word order using positional information. Most commonly, this positional information is represented by absolute position embeddings (APEs), that are learned from the pretraining data. However, in natural language, it is not absolute position that matters, but relative position, and the extent to which APEs can capture this type of information has not been studied. In this work, we observe that models trained with APE over-rely on positional information to the point that they break-down when subjected to sentences with shifted position information. Specifically, when models are subjected to sentences starting from a non-zero position (excluding the effect of priming), they exhibit noticeably degraded performance on zero- to full-shot tasks, across a range of model families and model sizes. Our findings raise questions about the efficacy of APEs to model the relativity of position information, and invite further introspection on the sentence and word order processing strategies employed by these models.

pdf
I’m sorry to hear that”: Finding New Biases in Language Models with a Holistic Descriptor Dataset
Eric Michael Smith | Melissa Hall | Melanie Kambadur | Eleonora Presani | Adina Williams
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

As language models grow in popularity, it becomes increasingly important to clearly measure all possible markers of demographic identity in order to avoid perpetuating existing societal harms. Many datasets for measuring bias currently exist, but they are restricted in their coverage of demographic axes and are commonly used with preset bias tests that presuppose which types of biases models can exhibit. In this work, we present a new, more inclusive bias measurement dataset, HolisticBias, which includes nearly 600 descriptor terms across 13 different demographic axes. HolisticBias was assembled in a participatory process including experts and community members with lived experience of these terms. These descriptors combine with a set of bias measurement templates to produce over 450,000 unique sentence prompts, which we use to explore, identify, and reduce novel forms of bias in several generative models. We demonstrate that HolisticBias is effective at measuring previously undetectable biases in token likelihoods from language models, as well as in an offensiveness classifier. We will invite additions and amendments to the dataset, which we hope will serve as a basis for more easy-to-use and standardized methods for evaluating bias in NLP models.

pdf
Perturbation Augmentation for Fairer NLP
Rebecca Qian | Candace Ross | Jude Fernandes | Eric Michael Smith | Douwe Kiela | Adina Williams
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Unwanted and often harmful social biases are becoming ever more salient in NLP research, affecting both models and datasets. In this work, we ask whether training on demographically perturbed data leads to fairer language models. We collect a large dataset of human annotated text perturbations and train a neural perturbation model, which we show outperforms heuristic alternatives. We find that (i) language models (LMs) pre-trained on demographically perturbed corpora are typically more fair, and (ii) LMs finetuned on perturbed GLUE datasets exhibit less demographic bias on downstream tasks, and (iii) fairness improvements do not come at the expense of performance on downstream tasks. Lastly, we discuss outstanding questions about how best to evaluate the (un)fairness of large language models. We hope that this exploration of neural demographic perturbation will help drive more improvement towards fairer NLP.

pdf bib
Proceedings of the First Workshop on Dynamic Adversarial Data Collection
Max Bartolo | Hannah Kirk | Pedro Rodriguez | Katerina Margatina | Tristan Thrush | Robin Jia | Pontus Stenetorp | Adina Williams | Douwe Kiela
Proceedings of the First Workshop on Dynamic Adversarial Data Collection

pdf
Benchmarking Compositionality with Formal Languages
Josef Valvoda | Naomi Saphra | Jonathan Rawski | Adina Williams | Ryan Cotterell
Proceedings of the 29th International Conference on Computational Linguistics

Recombining known primitive concepts into larger novel combinations is a quintessentially human cognitive capability. Whether large neural models in NLP acquire this ability while learning from data is an open question. In this paper, we look at this problem from the perspective of formal languages. We use deterministic finite-state transducers to make an unbounded number of datasets with controllable properties governing compositionality. By randomly sampling over many transducers, we explore which of their properties (number of states, alphabet size, number of transitions etc.) contribute to learnability of a compositional relation by a neural network. In general, we find that the models either learn the relations completely or not at all. The key is transition coverage, setting a soft learnability limit at 400 examples per transition.

2021

pdf
Generalising to German Plural Noun Classes, from the Perspective of a Recurrent Neural Network
Verna Dankers | Anna Langedijk | Kate McCurdy | Adina Williams | Dieuwke Hupkes
Proceedings of the 25th Conference on Computational Natural Language Learning

Inflectional morphology has since long been a useful testing ground for broader questions about generalisation in language and the viability of neural network models as cognitive models of language. Here, in line with that tradition, we explore how recurrent neural networks acquire the complex German plural system and reflect upon how their strategy compares to human generalisation and rule-based models of this system. We perform analyses including behavioural experiments, diagnostic classification, representation analysis and causal interventions, suggesting that the models rely on features that are also key predictors in rule-based models of German plurals. However, the models also display shortcut learning, which is crucial to overcome in search of more cognitively plausible generalisation behaviour.

pdf
Masked Language Modeling and the Distributional Hypothesis: Order Word Matters Pre-training for Little
Koustuv Sinha | Robin Jia | Dieuwke Hupkes | Joelle Pineau | Adina Williams | Douwe Kiela
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

A possible explanation for the impressive performance of masked language model (MLM) pre-training is that such models have learned to represent the syntactic structures prevalent in classical NLP pipelines. In this paper, we propose a different explanation: MLMs succeed on downstream tasks almost entirely due to their ability to model higher-order word co-occurrence statistics. To demonstrate this, we pre-train MLMs on sentences with randomly shuffled word order, and show that these models still achieve high accuracy after fine-tuning on many downstream tasks—including tasks specifically designed to be challenging for models that ignore word order. Our models perform surprisingly well according to some parametric syntactic probes, indicating possible deficiencies in how we test representations for syntactic information. Overall, our results show that purely distributional information largely explains the success of pre-training, and underscore the importance of curating challenging evaluation datasets that require deeper linguistic knowledge.

pdf
On the Relationships Between the Grammatical Genders of Inanimate Nouns and Their Co-Occurring Adjectives and Verbs
Adina Williams | Ryan Cotterell | Lawrence Wolf-Sonkin | Damián Blasi | Hanna Wallach
Transactions of the Association for Computational Linguistics, Volume 9

Abstract We use large-scale corpora in six different gendered languages, along with tools from NLP and information theory, to test whether there is a relationship between the grammatical genders of inanimate nouns and the adjectives used to describe those nouns. For all six languages, we find that there is a statistically significant relationship. We also find that there are statistically significant relationships between the grammatical genders of inanimate nouns and the verbs that take those nouns as direct objects, as indirect objects, and as subjects. We defer deeper investigation of these relationships for future work.

pdf bib
To what extent do human explanations of model behavior align with actual model behavior?
Grusha Prasad | Yixin Nie | Mohit Bansal | Robin Jia | Douwe Kiela | Adina Williams
Proceedings of the Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP

Given the increasingly prominent role NLP models (will) play in our lives, it is important for human expectations of model behavior to align with actual model behavior. Using Natural Language Inference (NLI) as a case study, we investigate the extent to which human-generated explanations of models’ inference decisions align with how models actually make these decisions. More specifically, we define three alignment metrics that quantify how well natural language explanations align with model sensitivity to input words, as measured by integrated gradients. Then, we evaluate eight different models (the base and large versions of BERT,RoBERTa and ELECTRA, as well as anRNN and bag-of-words model), and find that the BERT-base model has the highest alignment with human-generated explanations, for all alignment metrics. Focusing in on transformers, we find that the base versions tend to have higher alignment with human-generated explanations than their larger counterparts, suggesting that increasing the number of model parameters leads, in some cases, to worse alignment with human explanations. Finally, we find that a model’s alignment with human explanations is not predicted by the model’s accuracy, suggesting that accuracy and alignment are complementary ways to evaluate models.

pdf
Sometimes We Want Ungrammatical Translations
Prasanna Parthasarathi | Koustuv Sinha | Joelle Pineau | Adina Williams
Findings of the Association for Computational Linguistics: EMNLP 2021

Rapid progress in Neural Machine Translation (NMT) systems over the last few years has focused primarily on improving translation quality, and as a secondary focus, improving robustness to perturbations (e.g. spelling). While performance and robustness are important objectives, by over-focusing on these, we risk overlooking other important properties. In this paper, we draw attention to the fact that for some applications, faithfulness to the original (input) text is important to preserve, even if it means introducing unusual language patterns in the (output) translation. We propose a simple, novel way to quantify whether an NMT system exhibits robustness or faithfulness, by focusing on the case of word-order perturbations. We explore a suite of functions to perturb the word order of source sentences without deleting or injecting tokens, and measure their effects on the target side. Across several experimental conditions, we observe a strong tendency towards robustness rather than faithfulness. These results allow us to better understand the trade-off between faithfulness and robustness in NMT, and opens up the possibility of developing systems where users have more autonomy and control in selecting which property is best suited for their use case.

pdf
UnNatural Language Inference
Koustuv Sinha | Prasanna Parthasarathi | Joelle Pineau | Adina Williams
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Recent investigations into the inner-workings of state-of-the-art large-scale pre-trained Transformer-based Natural Language Understanding (NLU) models indicate that they appear to understand human-like syntax, at least to some extent. We provide novel evidence that complicates this claim: we find that state-of-the-art Natural Language Inference (NLI) models assign the same labels to permuted examples as they do to the original, i.e. they are invariant to random word-order permutations. This behavior notably differs from that of humans; we struggle to understand the meaning of ungrammatical sentences. To measure the severity of this issue, we propose a suite of metrics and investigate which properties of particular permutations lead models to be word order invariant. For example, in MNLI dataset we find almost all (98.7%) examples contain at least one permutation which elicits the gold label. Models are even able to assign gold labels to permutations that they originally failed to predict correctly. We provide a comprehensive empirical evaluation of this phenomenon, and further show that this issue exists in pre-Transformer RNN / ConvNet based encoders, as well as across multiple languages (English and Chinese). Our code and data are available at https://github.com/facebookresearch/unlu.

pdf
Dynabench: Rethinking Benchmarking in NLP
Douwe Kiela | Max Bartolo | Yixin Nie | Divyansh Kaushik | Atticus Geiger | Zhengxuan Wu | Bertie Vidgen | Grusha Prasad | Amanpreet Singh | Pratik Ringshia | Zhiyi Ma | Tristan Thrush | Sebastian Riedel | Zeerak Waseem | Pontus Stenetorp | Robin Jia | Mohit Bansal | Christopher Potts | Adina Williams
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We introduce Dynabench, an open-source platform for dynamic dataset creation and model benchmarking. Dynabench runs in a web browser and supports human-and-model-in-the-loop dataset creation: annotators seek to create examples that a target model will misclassify, but that another person will not. In this paper, we argue that Dynabench addresses a critical need in our community: contemporary models quickly achieve outstanding performance on benchmark tasks but nonetheless fail on simple challenge examples and falter in real-world scenarios. With Dynabench, dataset creation, model development, and model assessment can directly inform each other, leading to more robust and informative benchmarks. We report on four initial NLP tasks, illustrating these concepts and highlighting the promise of the platform, and address potential objections to dynamic benchmarking as a new standard for the field.

2020

pdf bib
SIGMORPHON 2020 Shared Task 0: Typologically Diverse Morphological Inflection
Ekaterina Vylomova | Jennifer White | Elizabeth Salesky | Sabrina J. Mielke | Shijie Wu | Edoardo Maria Ponti | Rowan Hall Maudslay | Ran Zmigrod | Josef Valvoda | Svetlana Toldova | Francis Tyers | Elena Klyachko | Ilya Yegorov | Natalia Krizhanovsky | Paula Czarnowska | Irene Nikkarinen | Andrew Krizhanovsky | Tiago Pimentel | Lucas Torroba Hennigen | Christo Kirov | Garrett Nicolai | Adina Williams | Antonios Anastasopoulos | Hilaria Cruz | Eleanor Chodroff | Ryan Cotterell | Miikka Silfverberg | Mans Hulden
Proceedings of the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

A broad goal in natural language processing (NLP) is to develop a system that has the capacity to process any natural language. Most systems, however, are developed using data from just one language such as English. The SIGMORPHON 2020 shared task on morphological reinflection aims to investigate systems’ ability to generalize across typologically distinct languages, many of which are low resource. Systems were developed using data from 45 languages and just 5 language families, fine-tuned with data from an additional 45 languages and 10 language families (13 in total), and evaluated on all 90 languages. A total of 22 systems (19 neural) from 10 teams were submitted to the task. All four winning systems were neural (two monolingual transformers and two massively multilingual RNN-based models with gated attention). Most teams demonstrate utility of data hallucination and augmentation, ensembles, and multilingual training for low-resource languages. Non-neural learners and manually designed grammars showed competitive and even superior performance on some languages (such as Ingrian, Tajik, Tagalog, Zarma, Lingala), especially with very limited data. Some language families (Afro-Asiatic, Niger-Congo, Turkic) were relatively easy for most systems and achieved over 90% mean accuracy while others were more challenging.

pdf
Information-Theoretic Probing for Linguistic Structure
Tiago Pimentel | Josef Valvoda | Rowan Hall Maudslay | Ran Zmigrod | Adina Williams | Ryan Cotterell
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The success of neural networks on a diverse set of NLP tasks has led researchers to question how much these networks actually “know” about natural language. Probes are a natural way of assessing this. When probing, a researcher chooses a linguistic task and trains a supervised model to predict annotations in that linguistic task from the network’s learned representations. If the probe does well, the researcher may conclude that the representations encode knowledge related to the task. A commonly held belief is that using simpler models as probes is better; the logic is that simpler models will identify linguistic structure, but not learn the task itself. We propose an information-theoretic operationalization of probing as estimating mutual information that contradicts this received wisdom: one should always select the highest performing probe one can, even if it is more complex, since it will result in a tighter estimate, and thus reveal more of the linguistic information inherent in the representation. The experimental portion of our paper focuses on empirically estimating the mutual information between a linguistic property and BERT, comparing these estimates to several baselines. We evaluate on a set of ten typologically diverse languages often underrepresented in NLP research—plus English—totalling eleven languages. Our implementation is available in https://github.com/rycolab/info-theoretic-probing.

pdf
Adversarial NLI: A New Benchmark for Natural Language Understanding
Yixin Nie | Adina Williams | Emily Dinan | Mohit Bansal | Jason Weston | Douwe Kiela
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We introduce a new large-scale NLI benchmark dataset, collected via an iterative, adversarial human-and-model-in-the-loop procedure. We show that training models on this new dataset leads to state-of-the-art performance on a variety of popular NLI benchmarks, while posing a more difficult challenge with its new test set. Our analysis sheds light on the shortcomings of current state-of-the-art models, and shows that non-expert annotators are successful at finding their weaknesses. The data collection method can be applied in a never-ending learning scenario, becoming a moving target for NLU, rather than a static benchmark that will quickly saturate.

pdf
Predicting Declension Class from Form and Meaning
Adina Williams | Tiago Pimentel | Hagen Blix | Arya D. McCarthy | Eleanor Chodroff | Ryan Cotterell
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

The noun lexica of many natural languages are divided into several declension classes with characteristic morphological properties. Class membership is far from deterministic, but the phonological form of a noun and/or its meaning can often provide imperfect clues. Here, we investigate the strength of those clues. More specifically, we operationalize this by measuring how much information, in bits, we can glean about declension class from knowing the form and/or meaning of nouns. We know that form and meaning are often also indicative of grammatical gender—which, as we quantitatively verify, can itself share information with declension class—so we also control for gender. We find for two Indo-European languages (Czech and German) that form and meaning respectively share significant amounts of information with class (and contribute additional information above and beyond gender). The three-way interaction between class, form, and meaning (given gender) is also significant. Our study is important for two reasons: First, we introduce a new method that provides additional quantitative support for a classic linguistic finding that form and meaning are relevant for the classification of nouns into declensions. Secondly, we show not only that individual declensions classes vary in the strength of their clues within a language, but also that these variations themselves vary across languages.

pdf
A Tale of a Probe and a Parser
Rowan Hall Maudslay | Josef Valvoda | Tiago Pimentel | Adina Williams | Ryan Cotterell
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Measuring what linguistic information is encoded in neural models of language has become popular in NLP. Researchers approach this enterprise by training “probes”—supervised models designed to extract linguistic structure from another model’s output. One such probe is the structural probe (Hewitt and Manning, 2019), designed to quantify the extent to which syntactic information is encoded in contextualised word representations. The structural probe has a novel design, unattested in the parsing literature, the precise benefit of which is not immediately obvious. To explore whether syntactic probes would do better to make use of existing techniques, we compare the structural probe to a more traditional parser with an identical lightweight parameterisation. The parser outperforms structural probe on UUAS in seven of nine analysed languages, often by a substantial amount (e.g. by 11.1 points in English). Under a second less common metric, however, there is the opposite trend—the structural probe outperforms the parser. This begs the question: which metric should we prefer?

pdf
Are Natural Language Inference Models IMPPRESsive? Learning IMPlicature and PRESupposition
Paloma Jeretic | Alex Warstadt | Suvrat Bhooshan | Adina Williams
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Natural language inference (NLI) is an increasingly important task for natural language understanding, which requires one to infer whether a sentence entails another. However, the ability of NLI models to make pragmatic inferences remains understudied. We create an IMPlicature and PRESupposition diagnostic dataset (IMPPRES), consisting of 32K semi-automatically generated sentence pairs illustrating well-studied pragmatic inference types. We use IMPPRES to evaluate whether BERT, InferSent, and BOW NLI models trained on MultiNLI (Williams et al., 2018) learn to make pragmatic inferences. Although MultiNLI appears to contain very few pairs illustrating these inference types, we find that BERT learns to draw pragmatic inferences. It reliably treats scalar implicatures triggered by “some” as entailments. For some presupposition triggers like “only”, BERT reliably recognizes the presupposition as an entailment, even when the trigger is embedded under an entailment canceling operator like negation. BOW and InferSent show weaker evidence of pragmatic reasoning. We conclude that NLI training encourages models to learn some, but not all, pragmatic inferences.

pdf
Intrinsic Probing through Dimension Selection
Lucas Torroba Hennigen | Adina Williams | Ryan Cotterell
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Most modern NLP systems make use of pre-trained contextual representations that attain astonishingly high performance on a variety of tasks. Such high performance should not be possible unless some form of linguistic structure inheres in these representations, and a wealth of research has sprung up on probing for it. In this paper, we draw a distinction between intrinsic probing, which examines how linguistic information is structured within a representation, and the extrinsic probing popular in prior work, which only argues for the presence of such information by showing that it can be successfully extracted. To enable intrinsic probing, we propose a novel framework based on a decomposable multivariate Gaussian probe that allows us to determine whether the linguistic information in word embeddings is dispersed or focal. We then probe fastText and BERT for various morphosyntactic attributes across 36 languages. We find that most attributes are reliably encoded by only a few neurons, with fastText concentrating its linguistic structure more than BERT.

pdf
Multi-Dimensional Gender Bias Classification
Emily Dinan | Angela Fan | Ledell Wu | Jason Weston | Douwe Kiela | Adina Williams
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Machine learning models are trained to find patterns in data. NLP models can inadvertently learn socially undesirable patterns when training on gender biased text. In this work, we propose a novel, general framework that decomposes gender bias in text along several pragmatic and semantic dimensions: bias from the gender of the person being spoken about, bias from the gender of the person being spoken to, and bias from the gender of the speaker. Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information. In addition, we collect a new, crowdsourced evaluation benchmark. Distinguishing between gender bias along multiple dimensions enables us to train better and more fine-grained gender bias classifiers. We show our classifiers are valuable for a variety of applications, like controlling for gender bias in generative models, detecting gender bias in arbitrary text, and classifying text as offensive based on its genderedness.

pdf
Pareto Probing: Trading Off Accuracy for Complexity
Tiago Pimentel | Naomi Saphra | Adina Williams | Ryan Cotterell
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The question of how to probe contextual word representations in a way that is principled and useful has seen significant recent attention. In our contribution to this discussion, we argue, first, for a probe metric that reflects the trade-off between probe complexity and performance: the Pareto hypervolume. To measure complexity, we present a number of parametric and non-parametric metrics. Our experiments with such metrics show that probe’s performance curves often fail to align with widely accepted rankings between language representations (with, e.g., non-contextual representations outperforming contextual ones). These results lead us to argue, second, that common simplistic probe tasks such as POS labeling and dependency arc labeling, are inadequate to evaluate the properties encoded in contextual word representations. We propose full dependency parsing as an example probe task, and demonstrate it with the Pareto hypervolume. In support of our arguments, the results of this illustrative experiment conform closer to accepted rankings among contextual word representations.

pdf
Measuring the Similarity of Grammatical Gender Systems by Comparing Partitions
Arya D. McCarthy | Adina Williams | Shijia Liu | David Yarowsky | Ryan Cotterell
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

A grammatical gender system divides a lexicon into a small number of relatively fixed grammatical categories. How similar are these gender systems across languages? To quantify the similarity, we define gender systems extensionally, thereby reducing the problem of comparisons between languages’ gender systems to cluster evaluation. We borrow a rich inventory of statistical tools for cluster evaluation from the field of community detection (Driver and Kroeber, 1932; Cattell, 1945), that enable us to craft novel information theoretic metrics for measuring similarity between gender systems. We first validate our metrics, then use them to measure gender system similarity in 20 languages. We then ask whether our gender system similarities alone are sufficient to reconstruct historical relationships between languages. Towards this end, we make phylogenetic predictions on the popular, but thorny, problem from historical linguistics of inducing a phylogenetic tree over extant Indo-European languages. Of particular interest, languages on the same branch of our phylogenetic tree are notably similar, whereas languages from separate branches are no more similar than chance.

pdf
Queens are Powerful too: Mitigating Gender Bias in Dialogue Generation
Emily Dinan | Angela Fan | Adina Williams | Jack Urbanek | Douwe Kiela | Jason Weston
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Social biases present in data are often directly reflected in the predictions of models trained on that data. We analyze gender bias in dialogue data, and examine how this bias is not only replicated, but is also amplified in subsequent generative chit-chat dialogue models. We measure gender bias in six existing dialogue datasets before selecting the most biased one, the multi-player text-based fantasy adventure dataset LIGHT, as a testbed for bias mitigation techniques. We consider three techniques to mitigate gender bias: counterfactual data augmentation, targeted data collection, and bias controlled training. We show that our proposed techniques mitigate gender bias by balancing the genderedness of generated dialogue utterances, and find that they are particularly effective in combination. We evaluate model performance with a variety of quantitative methods—including the quantity of gendered words, a dialogue safety classifier, and human assessments—all of which show that our models generate less gendered, but equally engaging chit-chat responses.

2019

pdf
On the Idiosyncrasies of the Mandarin Chinese Classifier System
Shijia Liu | Hongyuan Mei | Adina Williams | Ryan Cotterell
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

While idiosyncrasies of the Chinese classifier system have been a richly studied topic among linguists (Adams and Conklin, 1973; Erbaugh, 1986; Lakoff, 1986), not much work has been done to quantify them with statistical methods. In this paper, we introduce an information-theoretic approach to measuring idiosyncrasy; we examine how much the uncertainty in Mandarin Chinese classifiers can be reduced by knowing semantic information about the nouns that the classifiers modify. Using the empirical distribution of classifiers from the parsed Chinese Gigaword corpus (Graff et al., 2005), we compute the mutual information (in bits) between the distribution over classifiers and distributions over other linguistic quantities. We investigate whether semantic classes of nouns and adjectives differ in how much they reduce uncertainty in classifier choice, and find that it is not fully idiosyncratic; while there are no obvious trends for the majority of semantic classes, shape nouns reduce uncertainty in classifier choice the most.

pdf
Verb Argument Structure Alternations in Word and Sentence Embeddings
Katharina Kann | Alex Warstadt | Adina Williams | Samuel R. Bowman
Proceedings of the Society for Computation in Linguistics (SCiL) 2019

pdf
Quantifying the Semantic Core of Gender Systems
Adina Williams | Damian Blasi | Lawrence Wolf-Sonkin | Hanna Wallach | Ryan Cotterell
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Many of the world’s languages employ grammatical gender on the lexeme. For instance, in Spanish, house “casa” is feminine, whereas the word for paper “papel” is masculine. To a speaker of a genderless language, this categorization seems to exist with neither rhyme nor reason. But, is the association of nouns to gender classes truly arbitrary? In this work, we present the first large-scale investigation of the arbitrariness of gender assignment that uses canonical correlation analysis as a method for correlating the gender of inanimate nouns with their lexical semantic meaning. We find that the gender systems of 18 languages exhibit a significant correlation with an externally grounded definition of lexical semantics.

2018

pdf
Do latent tree learning models identify meaningful structure in sentences?
Adina Williams | Andrew Drozdov | Samuel R. Bowman
Transactions of the Association for Computational Linguistics, Volume 6

Recent work on the problem of latent tree learning has made it possible to train neural networks that learn to both parse a sentence and use the resulting parse to interpret the sentence, all without exposure to ground-truth parse trees at training time. Surprisingly, these models often perform better at sentence understanding tasks than models that use parse trees from conventional parsers. This paper aims to investigate what these latent tree learning models learn. We replicate two such models in a shared codebase and find that (i) only one of these models outperforms conventional tree-structured models on sentence classification, (ii) its parsing strategies are not especially consistent across random restarts, (iii) the parses it produces tend to be shallower than standard Penn Treebank (PTB) parses, and (iv) they do not resemble those of PTB or any other semantic or syntactic formalism that the authors are aware of.

pdf
XNLI: Evaluating Cross-lingual Sentence Representations
Alexis Conneau | Ruty Rinott | Guillaume Lample | Adina Williams | Samuel Bowman | Holger Schwenk | Veselin Stoyanov
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

State-of-the-art natural language processing systems rely on supervision in the form of annotated data to learn competent models. These models are generally trained on data in a single language (usually English), and cannot be directly used beyond that language. Since collecting data in every language is not realistic, there has been a growing interest in cross-lingual language understanding (XLU) and low-resource cross-language transfer. In this work, we construct an evaluation set for XLU by extending the development and test sets of the Multi-Genre Natural Language Inference Corpus (MultiNLI) to 14 languages, including low-resource languages such as Swahili and Urdu. We hope that our dataset, dubbed XNLI, will catalyze research in cross-lingual sentence understanding by providing an informative standard evaluation task. In addition, we provide several baselines for multilingual sentence understanding, including two based on machine translation systems, and two that use parallel data to train aligned multilingual bag-of-words and LSTM encoders. We find that XNLI represents a practical and challenging evaluation suite, and that directly translating the test data yields the best performance among available baselines.

pdf
A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference
Adina Williams | Nikita Nangia | Samuel Bowman
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

This paper introduces the Multi-Genre Natural Language Inference (MultiNLI) corpus, a dataset designed for use in the development and evaluation of machine learning models for sentence understanding. At 433k examples, this resource is one of the largest corpora available for natural language inference (a.k.a. recognizing textual entailment), improving upon available resources in both its coverage and difficulty. MultiNLI accomplishes this by offering data from ten distinct genres of written and spoken English, making it possible to evaluate systems on nearly the full complexity of the language, while supplying an explicit setting for evaluating cross-genre domain adaptation. In addition, an evaluation using existing machine learning models designed for the Stanford NLI corpus shows that it represents a substantially more difficult task than does that corpus, despite the two showing similar levels of inter-annotator agreement.

2017

pdf bib
The RepEval 2017 Shared Task: Multi-Genre Natural Language Inference with Sentence Representations
Nikita Nangia | Adina Williams | Angeliki Lazaridou | Samuel Bowman
Proceedings of the 2nd Workshop on Evaluating Vector Space Representations for NLP

This paper presents the results of the RepEval 2017 Shared Task, which evaluated neural network sentence representation learning models on the Multi-Genre Natural Language Inference corpus (MultiNLI) recently introduced by Williams et al. (2017). All of the five participating teams beat the bidirectional LSTM (BiLSTM) and continuous bag of words baselines reported in Williams et al. The best single model used stacked BiLSTMs with residual connections to extract sentence features and reached 74.5% accuracy on the genre-matched test set. Surprisingly, the results of the competition were fairly consistent across the genre-matched and genre-mismatched test sets, and across subsets of the test data representing a variety of linguistic phenomena, suggesting that all of the submitted systems learned reasonably domain-independent representations for sentence meaning.
Search
Co-authors