Abram Handler


2019

pdf
Query-focused Sentence Compression in Linear Time
Abram Handler | Brendan O’Connor
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Search applications often display shortened sentences which must contain certain query terms and must fit within the space constraints of a user interface. This work introduces a new transition-based sentence compression technique developed for such settings. Our query-focused method constructs length and lexically constrained compressions in linear time, by growing a subgraph in the dependency parse of a sentence. This theoretically efficient approach achieves an 11x empirical speedup over baseline ILP methods, while better reconstructing gold constrained shortenings. Such speedups help query-focused applications, because users are measurably hindered by interface lags. Additionally, our technique does not require an ILP solver or a GPU.

pdf
Investigating Sports Commentator Bias within a Large Corpus of American Football Broadcasts
Jack Merullo | Luke Yeh | Abram Handler | Alvin Grissom II | Brendan O’Connor | Mohit Iyyer
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Sports broadcasters inject drama into play-by-play commentary by building team and player narratives through subjective analyses and anecdotes. Prior studies based on small datasets and manual coding show that such theatrics evince commentator bias in sports broadcasts. To examine this phenomenon, we assemble FOOTBALL, which contains 1,455 broadcast transcripts from American football games across six decades that are automatically annotated with 250K player mentions and linked with racial metadata. We identify major confounding factors for researchers examining racial bias in FOOTBALL, and perform a computational analysis that supports conclusions from prior social science studies.

pdf
Summarizing Relationships for Interactive Concept Map Browsers
Abram Handler | Premkumar Ganeshkumar | Brendan O’Connor | Mohamed AlTantawy
Proceedings of the 2nd Workshop on New Frontiers in Summarization

Concept maps are visual summaries, structured as directed graphs: important concepts from a dataset are displayed as vertexes, and edges between vertexes show natural language descriptions of the relationships between the concepts on the map. Thus far, preliminary attempts at automatically creating concept maps have focused on building static summaries. However, in interactive settings, users will need to dynamically investigate particular relationships between pairs of concepts. For instance, a historian using a concept map browser might decide to investigate the relationship between two politicians in a news archive. We present a model which responds to such queries by returning one or more short, importance-ranked, natural language descriptions of the relationship between two requested concepts, for display in a visual interface. Our model is trained on a new public dataset, collected for this task.

2018

pdf
Relational Summarization for Corpus Analysis
Abram Handler | Brendan O’Connor
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

This work introduces a new problem, relational summarization, in which the goal is to generate a natural language summary of the relationship between two lexical items in a corpus, without reference to a knowledge base. Motivated by the needs of novel user interfaces, we define the task and give examples of its application. We also present a new query-focused method for finding natural language sentences which express relationships. Our method allows for summarization of more than two times more query pairs than baseline relation extractors, while returning measurably more readable output. Finally, to help guide future work, we analyze the challenges of relational summarization using both a news and a social media corpus.

2017

pdf
Identifying civilians killed by police with distantly supervised entity-event extraction
Katherine Keith | Abram Handler | Michael Pinkham | Cara Magliozzi | Joshua McDuffie | Brendan O’Connor
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

We propose a new, socially-impactful task for natural language processing: from a news corpus, extract names of persons who have been killed by police. We present a newly collected police fatality corpus, which we release publicly, and present a model to solve this problem that uses EM-based distant supervision with logistic regression and convolutional neural network classifiers. Our model outperforms two off-the-shelf event extractor systems, and it can suggest candidate victim names in some cases faster than one of the major manually-collected police fatality databases.

2016

pdf
Bag of What? Simple Noun Phrase Extraction for Text Analysis
Abram Handler | Matthew Denny | Hanna Wallach | Brendan O’Connor
Proceedings of the First Workshop on NLP and Computational Social Science