Abeer Abuzayed


Sarcasm and Sentiment Detection In Arabic Tweets Using BERT-based Models and Data Augmentation
Abeer Abuzayed | Hend Al-Khalifa
Proceedings of the Sixth Arabic Natural Language Processing Workshop

In this paper, we describe our efforts on the shared task of sarcasm and sentiment detection in Arabic (Abu Farha et al., 2021). The shared task consists of two sub-tasks: Sarcasm Detection (Subtask 1) and Sentiment Analysis (Subtask 2). Our experiments were based on fine-tuning seven BERT-based models with data augmentation to solve the imbalanced data problem. For both tasks, the MARBERT BERT-based model with data augmentation outperformed other models with an increase of the F-score by 15% for both tasks which shows the effectiveness of our approach.


Quick and Simple Approach for Detecting Hate Speech in Arabic Tweets
Abeer Abuzayed | Tamer Elsayed
Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection

As the use of social media platforms increases extensively to freely communicate and share opinions, hate speech becomes an outstanding problem that requires urgent attention. This paper focuses on the problem of detecting hate speech in Arabic tweets. To tackle the problem efficiently, we adopt a “quick and simple” approach by which we investigate the effectiveness of 15 classical (e.g., SVM) and neural (e.g., CNN) learning models, while exploring two different term representations. Our experiments on 8k labelled dataset show that the best neural learning models outperform the classical ones, while distributed term representation is more effective than statistical bag-of-words representation. Overall, our best classifier (that combines both CNN and RNN in a joint architecture) achieved 0.73 macro-F1 score on the dev set, which significantly outperforms the majority-class baseline that achieves 0.49, proving the effectiveness of our “quick and simple” approach.