Overview

Dependency-based pre-ordering for Zh-Ja MT - Patent-adapted in-house dependency parser

- Two-types of pre-ordering:
- * Rule-based, *Head Final Chinese* (Han+ 2012)
- * Data-driven, Learning to Rank (Yang+ 2012)
- Rule-based system is better, comparable to T2S

Syntactic Analysis

[Word segmentation & POS tagging]

- Joint sequential labeling (Suzuki+ 2012)

[Dependency parsing (untyped)]

- Second-order graph-based parsing

- [Semi-supervised learning] (Suzuki+ 2009)
- Labeled: 31K sents. (news), 35K sents. (patents)
- Unlabeled: 9GB (news), 100GB (patents)

Table 1: Performance in Chinese syntactic analysis

	Word seg.	POS	
Accuracy (F0 / UAS)	0.927	0.855	0

References:

Han, Dan et al., Head Finalization Reordering for Chinese-to-Japanese MT, Proc. SSST-6 (2012)

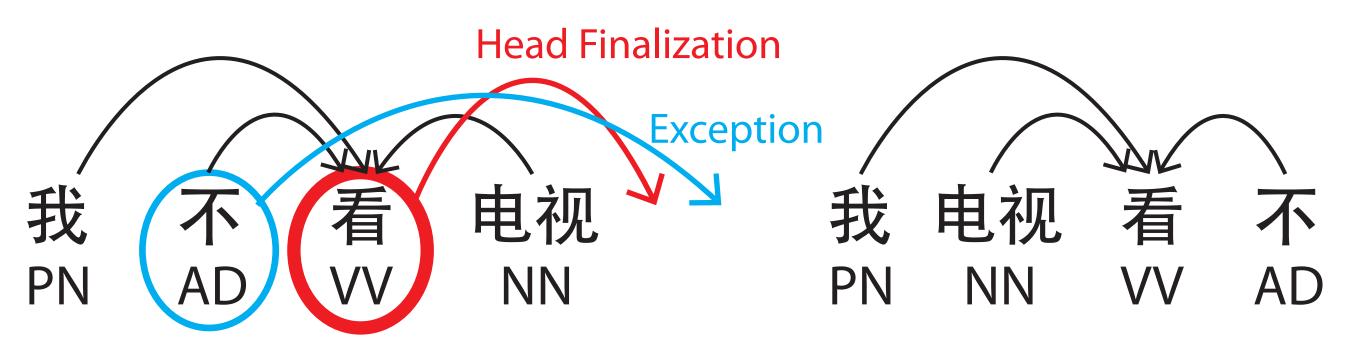
Hoshino, Sho et al., Discriminative Preordering Meets Kendall's tau Maximization, Proc. ACL (2015)

Isozaki, Hideki et al, HPSG-Based Preprocessing for English-to-Japanese Translation, ACM TALIP No.11 Vol.3 (2012)

Suzuki, Jun et al, An Empirical Study of Semi-supervised Structured Conditional Models for Dependency Parsing, Proc. EMNLP (2009)

Suzuki, Jun et al., 拡張ラグランジュ緩和を用いた同時自然言語解析法, Proc. NLP (2012) [in Japanese]

Yang, Nan et. al., A Ranking-based Approach to Word Reordering for SMT, Proc. ACL (2012)


Chinese-to-Japanese Patent Machine Translation based on Syntactic Pre-ordering for WAT 2015 Katsuhito Sudoh and Masaaki Nagata, NTT Communication Science Laboratories, Japan

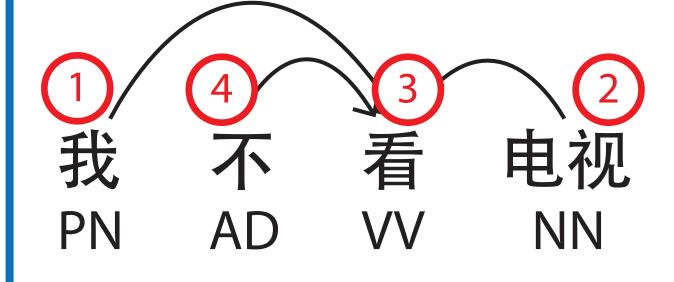
Dep.

.927

Rule-based pre-ordering

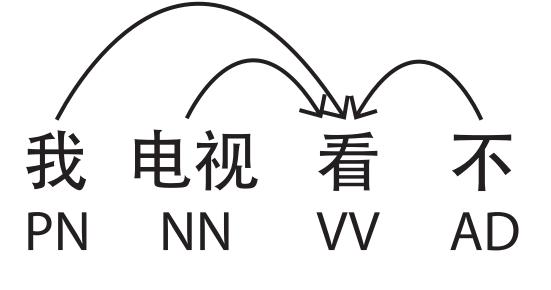
Reordering into *head-final* order in Japanese (En-Ja: Isozaki+ 2012, Zh-Ja: Han+ 2012) **Base rule:** Moving a head word *after* its modifiers **Exceptions** (placed after their head words): AS (aspect particle), SP (sentence-final particle) PU (punctuation), CC (coordinating conjunction) IJ (interjection), "不" (negation), "等" ("etc.")

Pros: stability, domain independence (?) Cons: effort for rule management


Data-driven pre-ordering

Reordering by reranking a head & its modifiers (Yang+ 2012)

- Implemented with Ranking SVM
- * Features: surface/POS (head & modifier)
 - head surface/POS (h & m)


 - relative position (h & m)

* Reordering oracles are determined by *maximizing Kendall's tau* criterion (Hoshino+ 2015)

Pros: no special effort, target adaptability Cons: instability, noisy auto. word alignment

- modifier surface/POS (head) - span surfaces/POSs (modifier)

SMT setup

Standard Moses

- MGIZA word al
- Kneser-Ney ph
- Word 5-gram L
- Distortion limit
- Weights choser

Results

Comparable to T2S baseline Rule-based is better than data-driven

Table 2: Official evaluation results				
	Human	RIBES	BLEU	
BL PBMT	n/a	0.781	0.382	
BLT2S	20.75	0.814	0.394	
Rule-based	16.25	0.822	0.406	
Data-driven	8.00	0.812	0.399	

Conclusion

Pre-ordering is a deterministic approx. of T2S --- good in efficiency with some loss in accuracy > forest-based pre-ordering, pre-ordering lattice

Rule-based pre-ordering works robustly --- due to head-final nature in Japanese

Data-driven pre-ordering is still challenging... --- difficulty in word alignment, non-parallelism --- constituent or dependency structures?

Remained patent MT issues: - Context awareness (consistency) - Domain awareness (lexical choice)

Phrase-based MT
lignment, g-d-f-a symal
nrase-table score smoothing
_M with Kneser-Ney smoothing
t: 9 (chosen over 0,3,6,9)
en over 5 indep. MERT runs