LINA: Identifying Comparable Documents from Wikipedia

Emmanuel Morin¹ Amir Hazem² Elizaveta Loginova-Clouet¹ Florian Boudin¹

¹LINA - UMR CNRS 6241, Université de Nantes, France

²LIUM - EA 4023, Université du Maine, France

BUCC-2015 Shared Task

Introduction

- ► How far can we go with a language agnostic model?
- We experiment with [Enright and Kondrak, 2007]'s parallel document identification method
- ▶ We adapt the method to the BUCC-2015 Shared task based on two assumptions:
 - 1. Source documents should be paired 1-to-1 with target documents
 - 2. We have access to comparable documents in several languages

Introduction

Method

Experiments

Summary

Method

► Fast parallel document identification [Enright and Kondrak, 2007]

- Documents = bags of hapax words
- Words = blank separated strings that are 4+ characters long
- Given a document in language A, the document in language B that shares the largest number of words is considered as parallel
- Works very well for parallel documents
 - 99.96% accuracy on EUROPARL [Enright and Kondrak, 2007]
 - ▶ 80% precision on Wikipedia [Patry and Langlais, 2011]
- ▶ We use this approach as *baseline* for detecting comparable documents

Improvements using 1-to-1 alignments

- ► In *baseline*, document pairs are scored independently
 - Multiple source documents are paired to a same target document
 - ho pprox 60% of English pages are paired with multiple pages in French or German
- We remove multiply assigned source documents using pigeonhole reasoning
 - ▶ From 60% to 11% of multiply assigned source documents

Improvements using cross-lingual information

- Simple document weighting function \rightarrow score ties
- We break the remaining score ties using a third language
 - ▶ From 11% to less than 4% of multiply assigned source documents

Outline

Introduction

Method

Experiments

Summary

Experimental settings

- ▶ We focus on the French-English and German-English pairs
- > The following measures are considered relevant
 - Mean Average Precision (MAP)
 - Success (Succ.)
 - Precision at 5 (P@5)

Results (FR \rightarrow EN)

		Train			Test	
Strategy	MAP	Succ.	P@5	MAP	Succ.	P@5
baseline	31.4	28.0	7.4	32.9	30.0	7.5
+ pigeonhole	57.7	56.4	11.9	_	_	_
+ cross-lingual	58.9	57.7	12.1	59.0	57.7	12.1

Results (DE \rightarrow EN)

		Train			Test	
Strategy	MAP	Succ.	P@5	MAP	Succ.	P@5
baseline	28.7	24.9	6.9	29.0	24.9	7.1
+ pigeonhole	61.6	60.1	12.8	—	_	—
+ cross-lingual	62.3	60.9	12.8	62.2	60.7	12.8

Outline

Introduction

Method

Experiments

Summary

- Unsupervised, hapax words-based method
- Promising results, about 60% of success using pigeonhole reasoning
- Using a third language slightly improves the performance
- Future work
 - Finding the optimal alignment across the all languages
 - Relaxing the hapax-words constraint

Thank you

florian.boudin@univ-nantes.fr

References I

Enright, J. and Kondrak, G. (2007).

A fast method for parallel document identification.

In Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics (NAACL'07), pages 29–32, Rochester, New York, USA.

Patry, A. and Langlais, P. (2011).

Identifying parallel documents from a large bilingual collection of texts: Application to parallel article extraction in wikipedia.

In Proceedings of the 4th Workshop on Building and Using Comparable Corpora (BUCC'11), pages 87–95, Portland, Oregon, USA.