

Dataset Creation for Ranking Constructive News Comments Soichiro Fujita, † Hayato Kobayashi, ‡ Manabu Okumura † † Tokyo Institute of Technology ‡ Yahoo Japan Corporation / RIKEN AIP

Introduction

Background

- Task: Ranking comments in each article w.r.t. a quality measure
- Motivation: Improve comment visibility for the user experience
- Previous work: Quality measure = users' positive feedback (e.g., 'Like')
- Drawback1: Biased by where the comment appears (position bias)
- Drawback2: Biased by the majority of users, especially for political view

Approach

- Directly evaluate the quality of comments
 Constructiveness score (C-score)
- Investigate how to label comments
 i.e., which to pay attention:
 - Comment or article variation

初戦突破おめでとう! (Congratulations on win	ning the first match!)			
· ≝≝ ⁰ {Reply	6 35 9 2			
11/21(※) 14:33 悪意のある写真 (This is a malicious picture) 逆価 3	Like Dislik			
11/21(※) 14:34 今回もベスト8だろうな (He will only place in the ・ 返回 0	 top 8 again) 6 8 9 11			

Contributions

- Create a dataset for ranking constructive comments
- Including **100K+ Japanese comments** with constructiveness scores
- Our datasets will be available (https://research-lab.yahoo.co.jp/en/software)
- Show empirical evidence that *C-scores aren't always related to user feedback*Clarify the performance of pairwise ranking models tends to be *more enhanced*
- by the variation in comments than that in articles

Dataset Creation

Definition for "Constructiveness"

- Definition of dictionary:
- *"Having or intended to have a useful or beneficial purpose."* • Definition in this work:
- Digested version of the definition in (Kolhatkar+, 2017)

Crowdsourcing Task

- Goal: Labeling each comment with a graded numeric score (C-Score)
 Difficulty: Constructiveness includes some ambiguity
 → Hard to answer a numerical selection question or a comparison question
- (e.g., "How constructive is it?" / "Which is more constructive?") CS Task: Judge a comment to be constructive by a yes-or-no (binary) question
- Label: # of crowdsourcing workers who
 index of the second traction of the second t

Judged the comment t	o be constructive	Ex.1) We should build a society where	9
Article	Yes-or-no answer	people do not drink and smoke since both can lead to bad health or accidents.	
Comment Comment	Aggregate Constructive: 4 people Not : 6 people	Ex.2) If giving freedom, punishment should also be strictly given. Ex.3) They are fools because they smoke,	(
: workers	<u>C-score = 4</u> T	or they smoke because they are fools. itle: "Lifting the ban on drinking and smoking of	at 18

Training and Test Datasets

- Data structure: (article, comment, C-score)
- Training dataset: Randomly selected comments in each article
 Shallow: 40K comments with article variation (5 comments * 8K articles)
 Deep: 40K comments with comment variation (100 comments * 400 articles)
- Test dataset: All comments in each article
 Simulate a real situation
 #A #C #C#A
- Simulate a real situation
 Krippondorff's alpha (relative comp.)
- Krippendorff's alpha (relative comp.)
 Shallow: 0.53, Deep: 0.55
 Deep 400
- Comparison with User Feedback

Setting

- Investigate the relationship between *constructiveness* and *user feedback*
- Comparing C-scores of 5K comments (5 comments * 1K articles) extracted by
 Like: Descending order of user feedback score
- Random
- Result
- The correlation coefficient between user feedback scores and C-scores was nearly zero (-0.0036)

	(0.0000)
Constructivenes	ss is completely
different from u	iser feedback

40.000

40.000

Ranking Constructive News Comments

Compared Methods

- Like, Random
- Ranks with the user feedback score / Ranks randomly
- Length
- Ranks in descending order on the basis of the comment length
- RankSVM (Lee+, 2014)
- Ranks via a linear rankSVM model
 Trained to predict relative constructiveness between two comments
- SVR (Vapnik+, 1997)
- Ranks via a support vector regression model with a linear kernel
- Trained to directly predict the C-score

Preprocessing and Features

Normalization

constant

True C-score of

the i-th ranked comment

Evaluation

NDCG@k: Normalized Discounted Cumulative Gain $\frac{Z_k \sum_{i=1}^{k} \frac{r_i}{\log_2(i+1)}}{}$

- Widely used for evaluating ranking models in information retrieval tasks
 NDCG becomes higher as the inferred ranking becomes closer to the
 - correct ranking, especially for top ranked comments Precision @k
- Precision@k
- Ratio of correctly included comments in the inferred top-k comments with respect to the true top-k comments

Results

- Neither of *Like* and *Random* performed well
- Length performed better than Like and Random
- RankSVM: Performed better with Deep than with Shallow
- Reason: The number of pairwise examples increases in $\mathcal{O}(n^2)$
- SVR: Performed better with Shallow than with Deep
- Reason: Features based on articles can be useful for directly inferring the C-scores without comparing comments

Overall

- NDCG: RankSVM with Deep consistently performed the best
- Differences between NDCGs of *RankSVM* with *Deep* and *SVR* with *Shallow* were statistically significant in a paired t-test (p < 0.05)
- Prec: RankSVM with Deep was beaten by SVR with Shallow
- RankSVM failed to find the best solutions (the most constructive comment) but obtained better solutions (fairly constructive ones)
- Note: Neural ranking model got consistent results with these finding

	Dataset	NDCG@1	NDCG@5	NDCG@10	Prec@1	Prec@5	Prec@10
Like	-	29.93	31.84	34.99	2.00	6.20	8.70
Random	-	25.85	27.90	29.06	1.10	4.60	6.50
Length	-	60.28	64.93	67.72	6.00	20.80	30.04
RankSVM	Shallow	72.24	74.63	76.79	14.50	29.40	41.24
RankSVM	Deep	74.15	76.44	78.25	13.00	31.60	42.20
SVR	Shallow	73.87	75.48	76.97	16.50	32.70	41.00
SVR	Deep	69.68	71.99	74.26	11.00	27.20	36.35

Related/Future Work

Related Work

Score

 $0 \sim 10$

 $0\sim40$

 $100 \quad 0 \sim 10$

212

- · Ranking comments on news/discussion services
 - Previous studies (Wei+, 2016, ...) only used user feedback
 - User feedback is completely different from constructiveness
- Analyzing constructiveness
- Previous studies (Kolhatkar+, 2017, ...) addressed binary classification tasks
 Our task is a ranking task based on graded numeric scores
- Other approaches to analyze the quality of comments
- Sentiment analysis (Fan+, 2010, ...) , hate speech detection (Kwok+, 2013, ...)
- Not suitable in this task (e.g., "Great!" is not constructive)

Future Work

- Labeling promising comments via active learning
- Evaluation with A/B testing on the running service
- Ranking constructive comments while keeping their diversity