
Appendix

A Examples of Task Decomposition

In Figure 1, we show an example of task decom-
position for standard NER.

Text Brush Wellman .

Tag B-ORG I-ORG O O O O O

comments on beryllium lawsuits

Seg B I O O O O O

Ent ORG ORG O O O O O

Figure 1: An example of NER decomposition.

In Figure 2, we show another example of task
decomposition for target sentiment, in addition to
the one in the main text.
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Figure 2: An extra example of target sentiment decom-
position.

B Full Experimental Results on Target
Sentiment

The complete results of our experiments on the tar-
get sentiment task are summarized in Tab. 1. Our
LSTM-CRF-TI(g) model outperforms all the other
competing models in Precision, Recall and the F1
score.

C Experiments on Named Entity
Recognition

NER datasets We evaluated our models on
three NER datasets, the English, Dutch and Span-
ish parts of the 2002 and 2003 CoNLL shared
tasks (Sang and F., 2002; Sang et al., 2003). We
used the original division of training, validation

and test sets. The task is defined over four different
entity types: PERSON, LOCATION, ORGANIZA-
TION, MISC. We used the BIOES tagging scheme
during the training, and convert them back to orig-
inal tagging scheme in testing as previous stud-
ies show that using this tagging scheme instead of
BIO2 can help improve performance (Ratinov and
Roth, 2009; Lample et al., 2016; Ma and Hovy,
2016; Liu et al., 2018). As a result, the segmen-
tation module had 5 output labels, and the entity
module had 4. The final decision task, consisted
of the Cartesian product of the segmentation set
(BIES) and the entity set, plus the “O” tag, result-
ing in 17 labels.

Results on NER We compared our models with
the state-of-the-art systems on English1, Dutch
and Spanish. For Dutch and Spanish, we used
cross-lingual embedding as a way to exploit lex-
ical information. The results are shown in Tab. 2
and Tab. 32. Our best-performing model outper-
form all the competing systems.

D Additional Experiments on
Knowledge Integration

We conducted additional experiments on knowl-
edge integration in the same setting as in the main
text to investigate the properties of the modules.
Figure 3 shows the results for Dutch and Spanish
NER datasets, while Figure 4 shows the results for
the Subjective Polarity Disambiguation Datasets
using the in-domain data.

1Liu et al.’s results are different since their implementa-
tion did not convert the predicted BIOES tags back to BIO2
during evaluation. For fair comparison, we only report the
results of the standard evaluation.

2We thank reviewers for pointing out a paper (Agerri and
Rigau, 2016) obtains the new state-of-the-art result on Dutch
with comparable results on Spanish.



System Architecture English Spanish
Pre Rec F1 Pre Rec F1

Zhang, Zhang and Vo (2015)

Pipeline 43.71 37.12 40.06 45.99 40.57 43.04
Joint 44.62 35.84 39.67 46.67 39.99 43.02

Collapsed 46.32 32.84 38.36 47.69 34.53 40.00

Li and Lu (2017)

SS 44.57 36.48 40.11 46.06 39.89 42.75
+embeddings 47.30 40.36 43.55 47.14 41.48 44.13

+POS tags 45.96 39.04 42.21 45.92 40.25 42.89
+semiMarkov 44.49 37.93 40.94 44.12 40.34 42.14

Base Line LSTM-CRF 53.29 46.90 49.89 51.17 46.71 48.84

This work
LSTM-CRF-T 54.21 48.77 51.34 51.77 47.37 49.47
LSTM-CRF-Ti 54.58 49.01 51.64 52.14 47.56 49.74

LSTM-CRF-Ti(g) 55.31 49.36 52.15 52.82 48.41 50.50

Table 1: Performance on the target sentiment task

Model English
LSTM-CRF (Lample et al., 2016) 90.94
LSTM-CNN-CRF (Ma and Hovy, 2016) 91.21
LM-LSTM-CRF (Liu et al., 2018) 91.06
LSTM-CRF-T 90.8
LSTM-CRF-TI 91.16
LSTM-CRF-TI(g) 91.68

Table 2: Comparing our models with several state-
of-the-art systems on the CoNLL 2003 English NER
dataset.

Model Dutch Spanish
Carreras et al. (2002) 77.05 81.39
Nothman et al. (2013) 78.60 N/A
dos Santos and Guimarães (2015) N/A 82.21
Gillick et al. (2015) 82.84 82.95
Lample et al. (2016) 81.74 85.75
LSTM-CRF-T 83.91 84.89
LSTM-CRF-TI 84.12 85.28
LSTM-CRF-TI(g) 84.51 85.92

Table 3: Comparing our models with recent results on
the 2002 CoNLL Dutch and Spanish NER datasets.
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Figure 3: Experimental results on modular knowledge
integration on the Dutch and Spanish NER datasets.

E Convergence Analysis

The proposed twofold modular infusion model
(with guided gating as an option) breaks the com-
plex learning problem into several sub-problems
and then integrate them using joint training. The
process defined by this formulation has more pa-
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Figure 4: Experimental results on modular knowledge
integration on the Subjective Polarity Disambiguation
Datasets.

rameters and requires learning multiple objectives
jointly. Our convergence analysis intends to eval-
uate whether the added complexity leads to a
harder learning problem (i.e., slower to converge)
or whether the tasks constrain each other and as a
result can be efficiently learned.

We compare between our LSTM-CRF-TI(g)
model and recent published top models on the En-
glish NER dataset in Figure 5 and on the subjec-
tive polarity disambiguation datasets in Figure 6.
The curve compares convergence speed in terms
of learning epochs. Our LSTM-CRF-TI(g) model
has a much faster convergence rate compared to
the other models.
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