


Motivation

● Good translation preserves the meaning of the sentence.
● Neural MT learns to represent the sentence.

○ Is the representation “meaningful” in some sense?







Evaluating sentence representations

● Evaluation through classification.
● Evaluation through similarity.
● Evaluation using paraphrases.

● SentEval (Conneau et al., 2017)
○ prediction tasks for evaluating sentence embeddings
○ focus on semantics (recently, “linguistics” task added, too).

● HyTER paraphrases (Dreyer and Marcu, 2014)













Evaluation through similarity

● 7 similarity tasks: pairs of sentences + human judgement

○ with training set, sent. similarity predicted by regression,
○ without training set, cosine similarity used as sent. sim.,
○ ultimately, the predicted sent. similarity is correlated with 

the golden truth.
● In sum, we report them as “AvgSim”.

I think it probably depends on your money. It depends on your country. 0

Yes, you should mention your experience. Yes, you should make a resume 2

Hope this is what you are looking for. Is this the kind of thing you're looking for? 4





http://cocodataset.org/#explore?id=78026






 



Classification task
1. Remove some 

points from 
the clusters.

2. Train an LDA 
classifier with 
the remaining 
points.

3. Classify the 
removed 
points back.

?

?

?



Sequence-to-sequence with attention

● Bahdanau et al. (2014)
● αij: weight of the jth 

encoder state for the
ith decoder state

● no sentence embedding









Multi-head inner attention

● Liu et al. (2016), Li et al. 
(2016), Lin et al. (2017)

● αij: weight of the jth encoder 
state for the ith column of MT

● concatenate columns of MT 
→ sentence embedding

● linear projection of columns 
to control embedding size



decoder „selects“ components of 
embedding

decoder operates on entire 
embedding

Proposed NMT architectures

ATTN-CTX ATTN-ATTN  (compound att.)





Evaluated NMT models

● model architectures:
○ FINAL, FINAL-CTX: no attention
○ AVGPOOL, MAXPOOL: pooling instead of attention
○ ATTN-CTX: inner attention, constant context vector
○ ATTN-ATTN: inner attention, decoder attention
○ TRF-ATTN-ATTN: Transformer with inner attention

● translation from English (to Czech or German), evaluating 
embeddings of English (source) sentences
○ en→cs: CzEng 1.7 (Bojar et al., 2016)
○ en→de: Multi30K (Elliott et al., 2016; Helcl and Libovický, 2017)



Sample Results – translation quality en→cs
Model Heads BLEU

Manual
(> other)

Manual
(≥ other)

„Bahdanau“ ATTN — 22.2 50.9 93.8

compound 
attention

ATTN-ATTN 8 18.4 42.5 88.6

ATTN-ATTN 4 17.1 — —

inner attention + 
„Cho“

ATTN-CTX 4 16.1 31.7 77.9

„Cho“ FINAL-CTX — 15.5 — —

ATTN-ATTN 1 14.8 27.3 71.7

„Sutskever“ FINAL — 10.8 — —

Selected models trained for translation from English to Czech. The 
embedding size is 1000 (except ATTN).
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Selected models trained for translation from English to Czech. The 
embedding size is 1000 (except ATTN).

Attention in 
the encoder 

helps 
translation 

quality.
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Sample Results – translation quality en→cs

Selected models trained for translation from English to Czech. The 
embedding size is 1000 (except ATTN).

More attention 
heads

→ better 
translation 

quality.

Model Heads BLEU Manual
(> other)

Manual
(≥ other)

„Bahdanau“ ATTN — 22.2 50.9 93.8

compound 
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ATTN-ATTN 8 18.4 42.5 88.6

ATTN-ATTN 4 17.1 — —

inner attention + 
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Sample Results – representation eval. en→cs

Model Size Heads SentEval 
AvgAcc

SentEval
AvgSim

Paraphrases
class. accuracy 
(COCO)

InferSent 4096 — 81.7 0.70 31.58

GloVe bag-of-words 300 — 75.8 0.59 34.28

FINAL-CTX (“Cho“) 1000 — 74.4 0.60 23.20

ATTN-ATTN 1000 1 73.4 0.54 21.54

ATTN-CTX 1000 4 72.2 0.45 14.60

ATTN-ATTN 1000 4 70.8 0.39 10.84

ATTN-ATTN 1000 8 70.0 0.36 10.24

Selected models trained for translation from English to Czech. InferSent and GloVe-
BOW are trained on monolingual (English) data.
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Selected models trained for translation from English to Czech. InferSent and GloVe-
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Baselines 
are hard to 

beat.
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Model Size Heads SentEval 
AvgAcc

SentEval
AvgSim

Paraphrases
class. accuracy 
(COCO)

InferSent 4096 — 81.7 0.70 31.58

GloVe bag-of-words 300 — 75.8 0.59 34.28

FINAL-CTX (“Cho“) 1000 — 74.4 0.60 23.20

ATTN-ATTN 1000 1 73.4 0.54 21.54

ATTN-CTX 1000 4 72.2 0.45 14.60

ATTN-ATTN 1000 4 70.8 0.39 10.84

ATTN-ATTN 1000 8 70.0 0.36 10.24

Selected models trained for translation from English to Czech. InferSent and GloVe-
BOW are trained on monolingual (English) data.

More heads 
→ worse 
results.



Full Results – 
correlations

BLEU vs. other metrics:
−0.57 ± 0.31 (en→cs)
−0.36 ± 0.29 (en→de)

Pairwise average 
(except BLEU):
0.78 ± 0.32 (en→cs)
0.57 ± 0.23 (en→de)

en→
cs

en→
de



BLEU vs. other metrics:
−0.57 ± 0.31 (en→cs)
−0.54 ± 0.27 (en→de)

Pairwise average 
(except BLEU):
0.78 ± 0.32 (en→cs)
0.62 ± 0.23 (en→de)

Full Results – 
correlations
excluding 
Transformer

en→
cs

en→
de



Compound 
attention 
interpretation

ATTN-ATTN en-cs 
model with 8 heads



Compound 
attention 
interpretation

ATTN-ATTN en-cs 
model with 8 heads
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Heads divide the 
sentence 

equidistantly, not 
based on syntax or 

semantics.
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Summary

● Proposed NMT architecture combining the benefit of 
attention and one $&!#* vector representing the whole 
sentence.

● Evaluated the obtained sentence embeddings using a 
wide range of “semantic” tasks.

● The better the translation, the worse performance in 
“meaning” representation.

● Heads divide sentence equidistantly, not logically.Join our
JNLE Special Issue on Sentence Representations:

http://ufal.mff.cuni.cz/jnle-on-sentence-representation



http://hdl.handle.net/20.500.11956/99393
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