Unsupervised Abstractive Meeting Summarization with Multi-
Sentence Compression and Budgeted Submodular Maximization Guokan Shang ${ }^{1,2}$, Wensi Ding ${ }^{1}$, Zekun Zhang ${ }^{1}$, Antoine J.-P. Tixier ${ }^{1}$, Polykarpos Meladianos ${ }^{1,3}$, Michalis Vazirgiannis ${ }^{1,3}$, Jean-Pierre Lorré ${ }^{2}$ ${ }^{1}$ DaSciM Team, Computer Science Laboratory (LIX), École Polytechnique, Palaiseau, France
ZLINAGORA, Paris La Dáfense, France
${ }^{3}$ Athens University of Economics and Business, Athens, Greece ${ }^{1}$ DaSciM Team, Computer Science Laboratory (LIX), Ecole Polytechnique, Palaiseau, France
2LINAGORA, Paris La Défense, France
³thens University of Economics and Business, Athens, Greece ${ }^{1}$ DaSciM Team, Computer Science Laboratory (LIX), École Polytechnique, Palaiseau, France
²LINAGORA, Paris La Défense, France
${ }^{3}$ Athens University of Economics and Business, Athens, Greece LIN AGOPA
 Of ECONOMICS AND BUSINESS

Introduction

Spontaneous multi-party meeting speech transcription is made of often ill-formed and ungrammatical text fragments (utterances) \Rightarrow summarizing requires approaches that differ from traditional document summarization.

1. Preprocessing \& 2. Community Detection

- Filler words are discarded. uh-huh, okay well, by the way
- Consecutive stopwords at the head and tail are stripped.
\rightarrow Utterances containing less than 3 non-stopwords are pruned out.
Goal: group together the utterances that should be summarized by a common abstractive sentence [Murray et al. 2012].
- Utterances \rightarrow TFIDF \rightarrow LSA \rightarrow k-means \rightarrow communities

Word Scoring with Graph Degeneracy

Keywords are influential spreaders within their word co-occurrence network, better identified by CoreRank score [Tixier et al. 2016].

3. Multi-Sentence Compression (MSC)

Edge Weight Assignment $\Rightarrow w^{\prime \prime \prime}\left(p_{i}, p_{j}\right)=w^{\prime}\left(p_{i}, p_{j}\right) / w^{\prime \prime}\left(p_{i}, p_{j}\right)$
Local co-occurrence statistics:

$$
w^{\prime}\left(p_{i}, p_{j}\right)=\frac{\operatorname{freq}\left(p_{i}\right)+\operatorname{freq}\left(p_{j}\right)}{\sum_{P \in G^{\prime}, p_{i}, p_{j} \in P} \operatorname{diff}\left(P, p_{i}, p_{j}\right)^{-1}}
$$

Favors edges between words that frequently appear close to each other (word association).
freq $\left(p_{i}\right)$: number of words mapped to the node p_{i}.
$\operatorname{diff}\left(P, p_{i}, p_{j}\right)^{-1}$: inverse of the distance between p_{i} and p_{j} in path P.

- Global exterior knowledge (Word Attraction Force [Wang et al. 2014]):

$$
w^{\prime \prime}\left(p_{i}, p_{j}\right)=\frac{f r e q\left(p_{i}\right) \times f r e q\left(p_{j}\right)}{d_{p_{i}, p_{j}}^{2}} \quad \begin{array}{ll}
\text { Favor paths going through salient nodes } \\
\text { that are close in the embedding space } \\
& \text { (semantic relatedness) } .
\end{array}
$$

$d_{p_{i}, p_{i}}$: Euclidean distance of the word embedding vectors for p_{i} and p_{j}.
Path Reranking $\Rightarrow W(P) /|P| \times F(P) \times C(P) \times D(P) \Rightarrow$ the lowest is the best compression path.

- The path with the lowest cumulative edge weight $W(P)=\sum_{i=1}^{|P|-1} w^{\prime \prime \prime}\left(p_{i}, p_{i+1}\right)$ does not guarantee its readability nor informativeness \Rightarrow Reranking N best paths is necessary. - Reranking strategy based on Fluency, Coverage and Diversity:
$F(P)=\frac{\sum_{i=1}^{|P|} \log \operatorname{Pr}\left(p_{i} \mid p_{i-n+1}^{i-1}\right)}{\# n-\text { gram }} C(P)=\frac{\sum_{p_{i} \in P} T W-I D F\left(p_{i}\right)}{\# p_{i}} D(P)=\frac{\sum_{j=1}^{k} 1_{\exists p_{i} \in P \mid p_{i} \in c l u s t e r_{j}}}{|P|}$

Results

Figure 4: ROUGE-1 F-1 scores for various budgets (ASR transcriptions).
$\lambda \geq 0$: trade-off parameter (coverage and diversity), $n_{s_{i}}$: number of occurrences of word s_{i} in $S, w_{s_{i}}$: CoreRank score of word s_{i}

