

The Best of Both Worlds Combining Recent Advances in Neural Machine Translation

Mia Xu Chen* **Orhan Firat*** **Ankur Bapna*** Melvin Johnson **Wolfgang Macherey** George Foster Llion Jones Mike Schuster Noam Shazeer Niki Parmar Ashish Vaswani Jakob Uszkoreit Lukasz Kaiser Zhifeng Chen Yonghui Wu Macduff Hughes

ACL'18 Mebourne

*Equal Contribution

.

This is NOT an architecture search paper!

A Brief History of NMT Models

$$quality = f(X, \theta, \mu) \quad \begin{array}{l} X : \text{Data} \\ \theta : \text{Model} \end{array}$$

 μ : Hyperparameters

The Best of Both Worlds - I

Each new approach is:

• accompanied by a set of <u>modeling</u> and <u>training</u> techniques.

Goal:

- 1. Tease apart architectures and their accompanying techniques.
- 2. Identify key *modeling* and *training* techniques.
- 3. Apply them on RNN based Seq2Seq \rightarrow **RNMT+**

Conclusion:

• **RNMT+** outperforms all previous three approaches.

The Best of Both Worlds - II

Also, each new approach has:

• a fundamental architecture (signature wiring of neural network).

Goal:

- 1. Analyse properties of each architecture.
- 2. Combine their strengths.
- 3. Devise new hybrid architectures → Hybrids

Conclusion:

• **Hybrids** obtain further improvements over all the others.

Building Blocks

- RNN Based NMT RNMT
- Convolutional NMT ConvS2S
- Conditional Transformation Based NMT **Transformer**

GNMT - Wu et al.

- Core Components:
 - RNNs
 - Attention (Additive)
 - biLSTM + uniLSTM
 - Deep residuals
 - Async Training
- Pros:
 - De facto standard
 - Modelling state space
- Cons:
 - Temporal dependence
 - Not enough gradients

ConvS2S - Gehring et al.

- Core Components:
 - Convolution GLUs
 - Multi-hop attention
 - Positional embeddings
 - Careful initialization
 - Careful normalization
 - Sync Training
- Pros:
 - No temporal dependence
 - More interpretable than RNN
 - Parallel decoder outputs during training
- Cons:
 - Need to stack more to increase the receptive field

Transformer - Vaswani et al.

- Core Components:
 - $\circ \quad \text{Self-Attention} \quad$
 - Multi-headed attention
 - Layout: N->f()->D->R
 - Careful normalization
 - Careful batching
 - Sync training
 - Label Smoothing
 - Per-token loss
 - Learning rate schedule
 - Checkpoint Averaging
- Pros:
 - Gradients everywhere faster optimization
 - Parallel encoding both training/inference
- Cons:
 - Combines many advances at once
 - Fragile

The Best of Both Worlds - I: RNMT+

- The Architecture:
 - Bi-directional encoder 6 x LSTM
 - Uni-directional decoder 8 x LSTM
 - Layer normalized LSTM cell
 - Per-gate normalization
 - Multi-head attention
 - 4 heads
 - Additive (Bahdanau) attention

Model Comparison - I : BLEU Scores

WMT'14 En-Fr (35M sentence pairs)

Madal	Test DI EU	Epochs	Training
Widdel	lest bleu		Time
GNMT	38.95	-	-
ConvS2S ⁷	39.49 ± 0.11	62.2	438h
Trans. Base	39.43 ± 0.17	20.7	90h
Trans. Big ⁸	40.73 ± 0.19	8.3	120h
RNMT+	41.00 ± 0.05	8.5	120h

WMT'14 En-De (4.5M sentence pairs)

Madal	Test BLEU	Epochs	Training
Widdel			Time
GNMT	24.67	-	-
ConvS2S	25.01 ± 0.17	38	20h
Trans. Base	27.26 ± 0.15	38	17h
Trans. Big	27.94 ± 0.18	26.9	48h
RNMT+	28.49 ± 0.05	24.6	40h

- RNMT+/ConvS2S: 32 GPUs, 4096 sentence pairs/batch.
- Transformer Base/Big: 16 GPUs, 65536 tokens/batch.

Model Comparison - II : Speed and Size

WMT'14 En-Fr (35M sentence pairs)

Model	Test BLEU	Epochs	Training Time
GNMT	38.95	-	-
ConvS2S ⁷	39.49 ± 0.11	62.2	438h
Trans. Base	39.43 ± 0.17	20.7	90h
Trans. Big ⁸	40.73 ± 0.19	8.3	120h
RNMT+	41.00 ± 0.05	8.5	120h

Model	Examples/s	FLOPs	Params
ConvS2S	80	15.7B	263.4M
Trans. Base	160	6.2B	93.3M
Trans. Big	50	31.2B	375.4M
RNMT+	30	28.1B	378.9M

WMT'14 En-De (4.5M sentence pairs)

Modal	Test BLEU	Epochs	Training
widdei			Time
GNMT	24.67	-	-
ConvS2S	25.01 ± 0.17	38	20h
Trans. Base	27.26 ± 0.15	38	17h
Trans. Big	27.94 ± 0.18	26.9	48h
RNMT+	28.49 ± 0.05	24.6	40h

- RNMT+/ConvS2S: 32 GPUs, 4096 sentence pairs/batch.
- Transformer Base/Big: 16 GPUs, 65536 tokens/batch.

Stability: Ablations

WMT'14 En-Fr

Model	RNMT+	Trans. Big
Baseline	41.00	40.73
- Label Smoothing	40.33	40.49
- Multi-head Attention	40.44	39.83
- Layer Norm.	*	*
- Sync. Training	39.68	*

* Indicates an unstable training run

Evaluate importance of four key techniques:

- 1. Label smoothing
 - Significant for both
- 2. Multi-head attention
 - Significant for both
- 3. Layer Normalization
 - Critical to stabilize training (especially with multi-head attention)
- 4. Synchronous training
 - Critical for Transformer
 - Significant quality drop for RNMT+
 - Successful only with a tailored learning-rate schedule

The Best of Both Worlds - II: Hybrids

Strengths of each architecture:

- RNMT+
 - Highly expressive continuous state space representation.

• Transformer

- Full receptive field powerful feature extractor.
- Combining individual architecture strengths:
 - Capture complementary information "Best of Both Worlds".
- Trainability important concern with hybrids
 - Connections between different types of layers need to be carefully designed.

Google AI

Encoder - Decoder Hybrids

Encoder	Decoder	$En \rightarrow Fr$ Test BLEU
Trans. Big	Trans. Big	40.73 ± 0.19
RNMT+	RNMT+	41.00 ± 0.05
Trans. Big	RNMT+	$\textbf{41.12} \pm \textbf{0.16}$
RNMT+	Trans. Big	39.92 ± 0.21

Separation of roles:

- Decoder conditional LM
- Encoder build feature representations

 \rightarrow Designed to contrast the roles. (last two rows)

Encoder Layer Hybrids

Improved feature extraction:

- Enrich stateful representations with global self-attention
- Increased capacity

Details:

- Pre-trained components to improve trainability
- Layer normalization at layer boundaries

Cascaded Hybrid - **vertical** combination Multi-Column Hybrid - **horizontal** combination

Encoder Layer Hybrids

Model	En→Fr BLEU	En→De BLEU
Trans. Big	40.73 ± 0.19	27.94 ± 0.18
RNMT+	41.00 ± 0.05	28.59 ± 0.05
Cascaded	$\textbf{41.67} \pm \textbf{0.11}$	28.62 ± 0.06
MultiCol	41.66 ± 0.11	$\textbf{28.84} \pm \textbf{0.06}$

Lessons Learnt

Need to separate other improvements from the architecture itself:

- Your good ol' architecture may shine with new modelling and training techniques
- Stronger baselines (Denkowski and Neubig, 2017)

Dull Teachers - Smart Students

• "A model with a sufficiently advanced Ir-schedule is indistinguishable from magic."

expressivity $\not\propto$ trainability

Understanding and Criticism

- Hybrids have the potential, more than duct taping.
- Game is on for the next generation of NMT architectures

$$quality = f(X, \theta, \mu)$$

Thank You

Open source implementation coming soon!

https://ai.google/research/join-us/

https://ai.google/research/join-us/ai-residency/

