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Topic Model: Hierarchical Dirichlet Process (HDP)Motivation

Topic-Sensitive Representation Models
Hard Topic-Labeled Representation Hard Topic-Labeled + Generic Word Representation Soft Topic-Labeled Representation

Example: Nearest Neighbors of “bat”
Topic-Sensitive Skipgram (HTLE)

bats
batting
Bat
catcher
fielder
hitter
balls

While the team at bat is trying to score runs, the 
team in the field is attempting to record outs.

So that in one way things in the distressed areas are not 
as bad as they might be .

▪ direction
▪ respect
▪ route
▪ aspect
▪ some
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ball
pitchout
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batting
fielder

bats
batting
hitter
batsman
batted
hoary
Batting
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Having one representation per word fails to capture polysemy

We propose an approach to learn multiple representations per 
word by topic-modeling the context with HDP

Polysemous word ⬌"Diverse contexts ⬌ Distinct topic distributions

When context is available, multiple representations per word perform best in capturing the underlying meaning

Our topic-sensitive representations: 

capture different word senses

work as good as Skipgram with 6 times fewer dimensions

obtain improvements in the lexical substitution task, performing best in Noun substitution

Example:

Sim(ws, wt)

Ranking

1. respect
2. aspect
3. direction
4. route
5. some
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document-specific 
topic distribution

Topics ⌧

The bat wing is a membrane stretched across 
four "extremely" elongated fingers.

Example: The word “bat” in two different sentences:

Model
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SGE + C
MSSG
HTLE
HTLEadd
STLE

41.6 32.8 36.1 36.8
37.8 41.1 42.9 33.9 37.8 39.1
39.8 42.5 43.0 32.1 32.7 33.0
39.4 41.3 41.8 30.4 31.5 31.7
35.2 36.7 39.0 32.9 32.3 33.9

HTLE
HTLEadd
STLE

40.3 42.8 43.4 36.6 40.9 41.3
39.9 41.8 42.2 35.5 37.9 38.6
38.7 41.0 41.1 36.8 36.8 37.1

Inference

N/A

Sampled

Expected

Uses the hard topic labels resulting from HDP 
sampling to learn representations

Uses the sum of the hard topic-labeled representation 
and the generic (i.e. unlabeled) representation

Uses the topic distribution to compute a weighted 
sum over the word-topic representations 

Skipgram
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