Learning Topic-Sensitive Word Representations

Marzieh Fadaee Arianna Bisazza **Christof Monz** Informatics Institute, University of Amsterdam

- Having one representation per word fails to capture polysemy
- We propose an approach to learn multiple representations per word by topic-modeling the context with HDP

Polysemous word ↔ Diverse contexts ↔ Distinct topic distributions

Topic Model: Hierarchical Dirichlet Process (HDP)

Example: The word "bat" in two different sentences:

document-specific topic distribution

Sampling

- While the team at **bat** is trying to score runs, the team in the field is attempting to record outs.

- The **bat** wing is a membrane stretched across four "extremely" elongated fingers.

Example: Nearest Neighbors of "bat"

Pre-trained	Pre-trained Glove	Skingrom	Topic-Sensitive Skipgram (HTLE)			
Skipgram		Зкіругані		$ au_2$		
bats	bats	uroderma	ball	vespertilionidae		
batting	batting	magnirostrum	pitchout	heran		
hitter	Bat	sorenseni	batter	hipposideros		
batsman	catcher	miniopterus	toss-for	sorenseni		
batted	fielder	promops	umpire	luctus		
hoary	hitter	luctus	batting	coxi		
Batting	balls	micronycteris	fielder	kerivoula		

Evaluation: Lexical Substitution Task

Example: So that in one *way* things in the distressed areas are not as bad as they might be .

Results (Generalized Average Precision)

_			LS-SE07			LS-CIC			
_	Model	Inference	Dimension		Dimension				
			100	300	600	100	300	600	
-	SGE + C	N/A	36.6	40.9	41.6	32.8	36.1	36.8	
	MSSG		37.8	41.1	42.9	33.9	37.8	39.1	
	HTLE	add Sampled	39.8 [▲]	42.5 [▲]	43.0	32.1	32.7	33.0	
	HTLEadd		39.4 [△]	41.3 [▲]	41.8	30.4	31.5	31.7	
	STLE		35.2	36.7	39.0	32.9	32.3	33.9	
	HTLE		40.3 [*]	42.8 [^]	43.4	36.6 [▲]	40.9	41.3	
	HTLEadd	Expected	39.9 [▲]	41.8 [▲]	42.2	35.5°	37.9 [△]	38.6	
	STLE		38.7	41.0	41.1	36.8	36.8	37.1	
$im(w_s, w_t) = cos(\mathbf{h}(w_s^{\tau}), \mathbf{h}(w_t^{\tau'})) + \frac{\sum_c cos(\mathbf{h}(w_s^{\tau}), \mathbf{o}(w_c))}{C}$									
						$\sum_{i=1}^{n} c_{i}$	$\mathbf{h}(\mathbf{h})$	$) \mathbf{o}(u)$	

