Semantically-Aligned Equation Generation

for Solving and Reasoning Math Word Problems

Ting-Rui Chiang and Yun-Nung (Vivian) Chen https://github.com/MiuLab/E2EMathSolver

Math Word Problem

Each notebook takes $\mathbf{\$ 0 . 5}$ and each pen takes $\$ 1$. Tom has $\$ 10$. How many notebooks can he buy after buying 5 pens?

$$
x=10-1 \times 5 \div 0.5
$$

Prior Work

Non-neural approaches

- Template-based
(Kushman et al., Upadhyay and Chang)

$$
x=(?+?) \times ?-?
$$

fill

$$
x=(1+2) \times 3-4
$$

Rely on hand-crafted features!

Deep learning

- Seq2Seq
(Wang et al., Ling et al.)

$$
\begin{gathered}
\text { Problem } \\
\text { generate } \\
x=(1+2) \times 3-4
\end{gathered}
$$

Does not use the structure of math expression.

Overview of the Proposed Model

 after buying 5 pens?

Look Again at the Problem

Each notebook takes $\$ \mathbf{0 . 5}$ and each pen takes $\$ \mathbf{1}$. Tom has \$10. How many notebooks can he buy after buying $\mathbf{5}$ pens?

$\$ 10$

Semantic Meaning of the Operands

Each notebook takes $\$ \mathbf{0 . 5}$ and each pen takes $\mathbf{\$ 1}$. Tom has $\$ 10$. How many notebooks can he buy after buying $\mathbf{5}$ pens?
The amount of

Price of a pen
Number of pens bought

Idea: Bridging Symbolic and Semantic Worlds

Symbolic World

Semantic World

Preprocess

Each notebook takes $\$ \mathbf{0 . 5}$ and each pen takes $\$ 1$. Tom has \$10. How many notebooks can he buy after buying 5 pens?

Preprocess

$$
\begin{equation*}
0.5 \tag{1}
\end{equation*}
$$

Symbol Encoding

Each notebook takes $\$ 0.5$ and each pen takes $\$ 1$. Tom has $\$ 10$. How many notebooks can he buy after buying 5 pens?

Inside Encoder

Semantic Generation for Unknown x

[^0]
Operands \& Their Semantics

Each notebook takes $\mathbf{\$ 0 . 5}$ and each pen takes $\$ \mathbf{1}$. Tom has \$10. How many notebooks can he buy after buying $\mathbf{5}$ pens?

Intuition of Using Semantics

Each notebook takes $\$ 0.5$ and each pen takes $\$ 1$. Tom has \$10. How many notehooks can he buy after buying 5 pens?

Number of pens bought.

Equation Generation in Postfix

Each notebook takes $\$ \mathbf{0 . 5}$ and each pen takes $\$ \mathbf{1}$. Tom has $\$ 10$. How many notebooks can he buy after buying $\mathbf{5}$ pens?

$$
x 1015 \times-0.5 \div=
$$

Equation Generation by Stack Actions

- Stack is used
- The decoder generates stack actions.
- An equation is generated with actions on stack.

$$
x=10-1 \times 5 \div 0.5
$$

Action Selection in Each Step

Equation Generation by Stack Actions

Target Equation: $\mathrm{x}=10-1 \times 5 \div 0.5$
Generated Actions:

Action: push

Equation Generation by Stack Actions

Target Equation: $\mathrm{x}=10-1 \times 5 \div 0.5$
Generated Actions: x 1015

Action: push

Equation Generation by Stack Actions

Target Equation: $\mathrm{x}=10-1 \times 5 \div 0.5$
Generated Actions: x 1015

Action: \times

Equation Generation by Stack Actions

Target Equation: $\mathrm{x}=10-1 \times 5 \div 0.5$
Generated Actions: $x 1015 \times 0.5 \div=$

After many steps...

Training Process

- Target equation is given.
- Trained as Seq2Seq.

Experiments

- Dataset: Math23k
- In Chinese
- 23000 math word problems.
- Operators: +,-, \times, \div

Results

Ablation Test

Self-Attention for Qualitative Analysis

Encoder

Self-Attention for Qualitative Analysis

Encoder

Attention for Operand Semantics

The attention focuses on:

- Informative verbs
- "gain", "get", "fill", etc.
- Quantifier-related words

Conclusion

Three main contributions

- Approach: equation generation with stack
- Originality: automatic extraction of operand semantics
- Performance: a SOTA end-to-end neural model on Math23k

[^0]: * This part is actually done when decoding, but is present at this place for illustration. Check our paper for more information

