
A NAQANet Details and Numeracy
Requirements

Aside from typical paragraph spans, NAQANet
can also output spans in the question, counts from
0–9, and arithmetic expressions. The arithmetic
expressions are generated by first extracting all the
numbers from the passage and then assigning a co-
efficient in {-1,0,1} to each number. The final an-
swer is calculated as the sum of each number using
its associated coefficient.

Addition and subtraction questions are present
in DROP but do not require numeracy for
NAQANet: the model can output the correct co-
efficients based on the surrounding context words
without understanding number magnitude. For
example, consider a paragraph containing, “Su-
perbowl XXXI occurred in 1997 and Superbowl
XXXVII occurred in 2003”, and a question “How
many years after Superbowl XXXI did Superbowl
XXXVII occur?”. The model can output coeffi-
cient +1 on “2003” and -1 on “1997” and answer
correctly without understanding the magnitude of
the two years. Counting questions also do not
require reading or manipulating numbers in text:
the model only needs to output the correct 10-way
classification value.

B Left-padding for Enhancing
Char-CNN Numeracy

In modern deep learning and NLP frameworks,
pad tokens are often appended to the right of in-
puts to ensure equal lengths inside each batch (for
efficiency). When using character-level convolu-
tions, padding must be added to the characters of a
word when its length is smaller than the minimum
kernel width (for correctness). Naturally, the right
padding implementation is re-used, e.g., the two
numbers “11” and “110” are represented as:

11 = 11∅∅∅
110 = 110∅∅,

where ∅ is the pad token. However, right padding
is detrimental to learning numeracy: the “hun-
dreds” and “tens” digits are now in the same posi-
tion in the two tokens. We found that left padding
numbers substantially decreases the generalization
error and convergence rate for Char-CNN models
trained on the synthetic tasks.6

6Padding on the left and right via SAME convolutions
also mitigates this issue.

C Training Details for Probing

We create training/test splits for the addition task
in the following manner. We first shuffle and split
an integer range, putting 80% into train and 20%
into test. Next, we enumerate all possible pairs of
numbers in the two respective splits. When using
large ranges such as [0,999], we sub-sample a ran-
dom 10% of the training and test pairs.

For the list maximum task, we first shuffle and
split the data, putting 80% into a training pool of
numbers and 20% into a test pool. In initial experi-
ments, we created the lists of five numbers by sam-
pling uniformly over the training/test pool. How-
ever, as the random samples will likely be spread
out over the range, the numbers are easy to distin-
guish. We instead create 100,000 training exam-
ples and 10,000 examples in the following manner.
We first sample a random integer from the training
or test pool. Next, we sample from a Gaussian
with mean zero and variance equal to 0.01 times
the total size of the range. Finally, we add the ran-
dom Gaussian sample to the random integer, and
round to the nearest value in the pool. This forces
the numbers to be nearby.

D Additional Synthetic Results

D.1 Linear Regression Accuracies
Table 8 provides accuracies for number decoding
using linear regression (interpolation setting).

Interpolation Decoding (RMSE)
Integer Range [0,50] [-50,50] [0,999]

Random 13.86 29.46 275.41
Word2Vec 4.15 8.93 29.04
GloVe 3.21 5.76 23.27
ELMo 1.20 2.89 21.53
BERT 3.23 7.86 64.42

Table 8: Number Decoding interpolation accuracy
with linear regression. Linear regression is competitive
to the fully connected probe for smaller numbers.

D.2 Variances on Digit Form Results
Table 9 shows the mean and standard deviation for
the synthetic tasks using five random shuffles.



D.3 Float Values
We test floats with one decimal point. We follow
the setup for the list maximum task (Appendix C)
with a minor modification. For 50% of the train-
ing/test lists, we reuse the same integer five times
but sample a different random value to put after
the decimal point. For example, 50% of the lists
are of the form: [15.3, 15.6, 15.1, 15.8, 15.2] (the
same base integer is repeated with a different deci-
mal), and 50% are random integers with a random
digit after the decimal: [11.7, 16.4, 9.3, 7.9, 13.3].
This forces the model to consider the numbers on
both the left and the right of the decimal.

D.4 Word Form Results
Table 10 presents the results using word-forms.
We do not use numbers larger than 100 as they
consist of multiple words.

E Automatically Modifying DROP
Paragraphs

Modifying a DROP paragraph automatically is
challenging as it may change the answer to the
question if done incorrectly. We also cannot mod-
ify the answer because many DROP questions
have count answers. To guarantee that the origi-
nal annotated answer can still be used, we perform
the number transformation in the following man-
ner. We keep the original passage text the same,
but, we modify the model’s internal embeddings
for the numbers directly. In other words, the model
uses exactly the same embeddings for the original
text except for the modified numbers. The model
then needs to find the correct index (e.g. the in-
dex of the correct span, or the index of the correct
number) given these modified embeddings.

F Extrapolation with Data Augmentation

For each superlative and comparative example, we
modify the numbers in its paragraph using the Add
and Multiply techniques mentioned in Section 2.5.
We first multiply the paragraph’s numbers by a
random integer from [1, 10], and then add another
random integer from [0, 20]. We train NAQANet
on the original paragraph and an additional mod-
ified version for all training examples. We use a
single additional paragraph for computational ef-
ficiency; augmenting the data with more modified
paragraphs may further improve results.

We test NAQANet on the original validation set,
as well as a Bigger validation set. We created

the Bigger validation set by multiplying each para-
graph’s numbers by a random integer from [11,20]
and then adding a random value from [21,40].
Note that this range is larger than the one used for
data augmentation.

Table 11 shows the results of NAQANet trained
with data augmentation. Data augmentation pro-
vide small gains on the original superlative and
comparative question subset, and significant im-
provements on the Bigger version (it doubles the
model’s F1 score for superlative questions).



Interpolation List Maximum (5-classes) Decoding (RMSE) Addition (RMSE)
Integer Range [0,99] [0,999] [0,9999] [0,99] [0,999] [0,9999] [0,99] [0,999] [0,9999]

Random Vectors 0.16 ± 0.03 0.23 ± 0.12 0.21 ± 0.02 29.86 ± 4.44 292.88 ± 13.48 2882.62 ± 71.68 42.03 ± 7.79 410.33 ± 16.05 4389.39 ± 310.91
Untrained CNN 0.97 ± 0.01 0.87 ± 0.02 0.84 ± 0.03 2.64 ± 0.68 9.67 ± 1.17 44.40 ± 4.98 1.41 ± 0.05 14.43 ± 1.90 69.14 ± 21.54
Untrained LSTM 0.70 ± 0.05 0.66 ± 0.03 0.55 ± 0.02 7.61 ± 1.33 46.5 ± 5.65 210.34 ± 9.91 5.11 ± 2.1 45.69 ± 3.78 510.19 ± 31.45
Value Embedding 0.99 ± 0.01 0.88 ± 0.04 0.68 ± 0.06 1.20 ± 0.76 11.23 ± 1.35 275.5 ± 135.59 0.30 ± 0.01 15.98 ± 3.62 654.33 ± 69.91

Pre-trained
Word2Vec 0.90 ± 0.03 0.78 ± 0.05 0.71 ± 0.03 2.34 ± 1.44 18.77 ± 4.40 333.47 ± 14.83 0.75 ± 0.41 21.23 ± 3.53 210.07 ± 30.56
GloVe 0.90 ± 0.02 0.78 ± 0.04 0.72 ± 0.02 2.23 ± 1.26 13.77 ± 3.23 174.21 ± 31.91 0.80 ± 0.30 16.51 ± 1.17 180.31 ± 18.97
ELMo 0.98 ± 0.04 0.88 ± 0.02 0.76 ± 0.04 2.35 ± 0.65 13.48 ± 2.19 62.2 ± 5.04 0.94 ± 0.35 15.50 ± 2.49 45.71 ± 18.69
BERT 0.95 ± 0.02 0.62 ± 0.01 0.52 ± 0.07 3.21 ± 0.31 29.00 ± 7.93 431.78 ± 30.27 4.56 ± 1.76 67.81 ± 30.34 454.78 ± 91.07

Learned
Char-CNN 0.97 ± 0.02 0.93 ± 0.01 0.88 ± 0.02 2.50 ± 0.49 4.92 ± 0.97 11.57 ± 1.34 1.19 ± 0.18 7.75 ± 1.85 15.09 ± 0.90
Char-LSTM 0.98 ± 0.02 0.92 ± 0.02 0.76 ± 0.03 2.55 ± 1.81 8.65 ± 1.11 18.33 ± 3.21 1.21 ± 0.10 15.11 ± 1.87 25.37 ± 3.40

DROP-trained
NAQANet 0.91 ± 0.01 0.81 ± 0.02 0.72 ± 0.03 2.99 ± 1.11 14.19 ± 3.75 62.17 ± 4.31 1.11 ± 0.41 11.33 ± 1.67 90.01 ± 17.88

- GloVe 0.88 ± 0.02 0.90 ± 0.03 0.82 ± 0.02 2.87 ± 0.83 5.34 ± 0.77 35.39 ± 4.32 1.45 ± 0.95 9.91 ± 1.45 60.70 ± 13.04

Table 9: Mean and standard deviation for Table 4 (interpolation tasks with integers).

Interpolation List Maximum (5-classes) Decoding (MSE) Addition (MSE)
Integer Range [zero, fifty] [zero,ninety-nine] [zero, fifty] [zero,ninety-nine] [zero, fifty] [zero,ninety-nine]

Random Vectors 0.16 ± 0.03 0.23 ± 0.12 15.43 ± 1.13 29.86 ± 4.44 23.14 ± 4.46 43.86 ± 1.41

Pre-trained
Word2Vec 0.96 ± 0.05 0.91 ± 0.05 2.40 ± 0.64 3.94 ± 1.88 2.10 ± 0.31 4.10 ± 0.98
GloVe 0.93 ± 0.07 0.90 ± 0.03 3.02 ± 0.98 4.75 ± 1.59 3.33 ± 0.51 4.81 ± 1.00
ELMo 0.75 ± 0.04 0.82 ± 0.10 3.86 ± 0.92 7.31 ± 2.06 3.91 ± 0.55 6.97 ± 1.19
BERT 0.61 ± 0.11 0.66 ± 0.05 7.59 ± 1.37 13.55 ± 3.15 7.33 ± 1.05 12.91 ± 2.57

Learned
Char-CNN 0.98 ± 0.01 0.99 ± 0.01 5.73 ± 0.93 7.85 ± 2.36 6.11 ± 0.55 7.11 ± 2.34
Char-LSTM 0.89 ± 0.06 0.86 ± 0.08 8.45 ± 4.97 7.31 ± 2.06 8.91 ± 3.11 9.51 ± 1.19

DROP-trained
NAQANet 0.98 ± 0.01 0.97 ± 0.02 3.17 ± 1.05 4.31 ± 0.68 3.05 ± 0.87 3.95 ± 0.33

- GloVe 0.96 ± 0.03 0.97 ± 0.02 7.81 ± 1.34 9.43 ± 2.31 8.55 ± 0.88 10.01 ± 2.07

Table 10: Interpolation task accuracies with word form (e.g., “twenty-five”). The model is trained on a randomly
shuffled 80% of the Integer Range and tested on the remaining 20%. We show the mean and standard deviation for
five random shuffles.

Superlative Comparative All Validation
Original Bigger Original Bigger Original Bigger

NAQANet 64.5 / 67.7 30.0 / 32.2 73.6 / 76.4 70.3 / 73.0 46.2 / 49.2 38.7 / 41.4
+ Data Augmentation 67.6 / 70.9 59.2 / 62.4 76.0 / 77.7 75.0 / 76.8 46.1 / 49.3 42.8 / 45.8

Table 11: Data augmentation improves NAQANet’s interpolation and extrapolation results. We created the Bigger
version of DROP by multiplying numbers in the passage by a random integer from [11, 20] and then adding a
random integer from [21, 40]. Scores are shown in EM / F1 format.


