
A Supplemental Material

A.1 Model and Training Details
For all of the bilingual baselines and multilin-
gual model that we investigate, we use the Trans-
former (Vaswani et al., 2017) architecture. In par-
ticular, we use the Transformer Big model con-
taining 375M parameters in (Chen et al., 2018).
For multilingual models, we share all parameters
across language pairs including softmax layer in
input/output word embeddings.

During training, we use a temperature based
data sampling strategy, similar to the strategy used
to train the multilingual models in (Arivazhagan
et al., 2019b). That is, if pL is the probability that a
sentence in the corpus belongs to language pair L,
we sample from a distribution where the probabil-
ity of sampling from L is proportional to pL

1
T . All

the experiments in this paper are performed on a
model trained with a sampling temperature T = 5.

For the vocabulary, we use a Sentence Piece
Model (SPM) (Kudo and Richardson, 2018) with
64k tokens shared on both the encoder and decoder
side. To learn a joint SPM model given our imbal-
anced dataset, we followed the temperature based
sampling strategy with a temperature of T = 5.

Finally, all models are optimized using Adafac-
tor optimizer (Shazeer and Stern, 2018) with mo-
mentum factorization and a per-parameter norm
clipping threshold of 1.0. During optimization,
we followed a learning rate of a learning rate of
3.0, with 40K warm-up steps for the schedule,
which is decayed with the inverse square root of
the number of training steps after warm-up. BLEU
scores presented in this paper are calculated on
true-cased output and references, where we used
mteval-v13a.pl script from Moses.

A.2 Baselines and Multilingual BLEU Scores
To assess the quality of our single massively mul-
tilingual model trained on 103 languages, we
trained bilingual baselines using the same train-
ing data, with models that are comparable in their
size. For high resource languages, we trained
identical architecture models (Transformer-Big)
and only for a few low-resource languages we
trained smaller models with heavy regularization
(Transformer-Base). Results are shared in Fig-
ure 7. Note that, x-axes correspond to a differ-
ent language pairs sorted with respect to the avail-
able training data and y-axes correspond to the
divergence from the baseline BLEU scores. For

(a) Comparison of X-En pairs with baselines.

(b) Comparison of En-X pairs with baselines.

Figure 7: Trendlines depicting translation performance
of the massively multilingual model (blue curves) com-
pared to bilingual baselines (solid black lines). From
left to right, languages are arranged in decreasing or-
der of available training data (high-resource to low-
resource). y-axis depicts the BLEU score relative to
the bilingual baseline trained on the corresponding lan-
guage pair. Top panel for Any-to-English pairs and bot-
tom panel for English-to-Any pairs.

each language pair, the BLEU scores are calcu-
lated on the test set that is specific for that lan-
guage pair. From Figure 7 it is clear that our
massively multilingual model is dramatically bet-
ter on low-resource languages (right-most portion
of both panels) with some regression on high-
resource languages (left-most portion of the pan-
els). We provide the comparison with baselines
to ground our analysis of massively multilingual
model, which is competitive with bilingual base-
lines in quality.

A.3 CCA for Misaligned Sequences

In Section 2.2, we discussed how the mean pooling
strategy that we use is more suitable for our prob-
lem, where we use SVCCA to compare unaligned
sequences. In this section, we attempt to replicate
some results in the paper using a token-level CCA
strategy, and discuss the differences in our results.
In the mean pooling strategy, each datapoint form-
ing the subspace representing a language’s encod-
ing for a given layer is the mean of all timestep ac-
tivations in a single sentence. On the other hand,
in what we refer to as a token-level strategy, each
data point is the activation of a timestep, with no



Figure 8: Top layer of the encoder for En-X language pairs using token level SVCCA as a similarity measure.

Figure 9: The change in distribution of pairwise
SVCCA scores using our pooling strategy and a naive
token-wise strategy between English-to-Any language
pairs across the encoder layers of a multilingual NMT
model. We see that while the encoder representations
diverge in both cases, the top layer of the encoder does
not seem to show any divergence for the token-wise
strategy and is a possible artifact of the strategy.

differentiation between different sentences or po-
sitions.

In Figure 8, we plot the cluster formed by the
SVCCA scores of English-to-Any language pairs

using the method described in Section 3. Our data
is unaligned for compared other components of
our experiment, so we do not discuss those re-
sults. While we do see some amount of clustering
according to linguistic similarity, the clusters are
less separated than in Figure 10. We also compare
the distributions of pairwise SVCCA scores using
our pooling strategy and a naive token-wise strat-
egy between English-to-Any language pairs across
layers of the encoder. We see similar trends upto
the top layer of the encoder - this could possibly
be an artifact of the naive strategy.

A.4 Additional Clustering Visualization

Here, we plot the clusters formed by all languages
pairs, color coded by linguistic subfamily for the
top layer of both the encoder and decoder. As seen
in Figure 11, there is a clear separation between
languages of the form En-X and X-En. So, we
cluster the En-X and X-En language pairs (for the
top layer of the decoder and encoder respectively)
separately in Figure 11a and Figure 11b. The acti-
vations of the token embedding layers do not sep-
arate significantly, so we do not cluster them.

Low-resource, script-diverse language families

In this section we further the analysis from sub-
section 3.2, with a different set of language fam-



(a) Top layer of the encoder for X-En language pairs.

(b) Top layer of the decoder for En-X language pairs.

Figure 10: Visualization of the top layer of the encoder and decoder. Both the encoder and decoder show clustering
according to linguistic similarity.

ilies. In Figure 12, we visualize the relation-
ship between representations of the Iranian, Indo-
Aryan, and Dravidian languages, and demonstrate
that they cluster much more strongly by linguistic

similarity than by script or dataset size. We fur-
thermore demonstrate that within macro-clusters
corresponding to languages of particular fami-
lies, there exist micro-clusters corresponding to



(a) Top layer of the encoder. (b) Top layer of the decoder.

Figure 11: All-to-All (X-X) clustering of the encoder and decoder representations of all languages, based on their
SVCCA similarity on our multi-way parallel evaluation set.

(a) Embeddings, colored by language group (b) Encoder layer 5, colored by language group

(c) Embeddings, colored by script (d) Encoder layer 5, colored by script

Figure 12: Visualization of the Indo-Aryan languages, the Iranian languages, and the Dravidian languages, for
the embeddings (left column) and the top layer of the encoder (right column), coloring by different attributes to
highlight clusters. These are to-English direction.

branches within those families.

This is a diverse set of mid-to-low resource
languages, using a variety of scripts. The Dra-
vidian languages (Kannada, Malayalam, Tamil,
and Telugu) are from South India, and each use
their own abugida-based writing system. They are
agglutinative. The Indo-Aryan languages com-
prise the North-Indian languages, which are fu-
sional languages written in Devanagari (Hindi,
Marathi, Nepali), Arabic script (Sindhi, Urdu),

and several language-specific abugidas (Bengali,
Gujarati, Punjabi). The Iranian languages include
Farsi (Dari), Kurdish (in this case, Kurmanji), and
Pashto, written in Arabic script; and Tajik, writ-
ten in Cyrillic. All languages in these three groups
use SOV word order, and lie along swath of land
stretching roughly from Sri Lanka to Kurdistan. In
our datasets they are all low-resource languages,
though Hindi is on the upper end.

The first most striking thing about Figure 12 is



(a) Colored by language group: Indo-Iranian lan-
guages in red, Germanic languages in blue, and
Romance languages in green. Note that within the
Indo-Iranian languages, the Iranian languages are
to the right, and the Indic languages to the left.

(b) Colored by script: Roman script in grey, Arabic
script in blue, and a variety of other (mostly Indic)
scripts.

Figure 13: Visualization of the embedding layer for three branches of the Indo-European language family, coloring
by different attributes to highlight clusters. They group most strongly by linguistic group, with weak connection
by script.

that the linguistic group of each language ap-
pears to be a much stronger influence on the
clustering tendency than the script, even at the
level of the embeddings. The Dravidian lan-
guages cluster nicely, even though none shares a
subword with the other; as do the Indo-Aryan lan-
guages, which similarly are written in a variety of
scripts, and the Iranian languages, which are writ-
ten in two.

It is worth highlighting a few phenomena in this
visualization. Firstly, the two dialects of Persian
represented here, Tajik (tg) and Farsi (fa), are al-
most superimposed in the embedding visualiza-
tion, though they are written in Cyrillic and Ara-
bic scripts, respectively. Note also that in the em-
beddings, Hindi (hi) clusters closeliest with its fel-
low Western Indo-Aryan language Gujarati (gu),
rather than the two other languages written in the
Devanagari script, Marathi (mr) and Nepali (ne).
Among the Dravidian languages, we see that Kan-
nada (kn) and Telugu (te) form one pair, whereas
Tamil (ta) and Malayalam (ml) form another pair,
corresponding correctly with their linguistic sim-
ilarity (Moorti, 2011), even though none of them
share a writing system with any of the others.

Although the language family is important to
these clusters, it is important to note the apparent
role that writing system also plays in these visual-
izations. While Urdu (ur) and Sindhi (sd) weakly
cluster with the Indo-Aryan languages, they are as
close in the visualization to the less related Iranian
languages (which also use the Arabic script) than

their linguistic nearest neighbors, Hindi (hi) 10 and
Punjabi (pa) 11 , respectively.

Mid to high-resource, same-scripted languages
Unsurprisingly, in the higher-resource case, and
when most languages use a comparable script, the
clusters are much cleaner. Figure 13 shows an ex-
ample with the Romance languages and the the
Germanic languages, along with the Indo-Aryan
languages for comparison. They form three dis-
tinct clusters along what appear to be latent di-
rections encoding language family. The appar-
ent intersection off the three contains a few low-
resource languages, and can best be conceptual-
ized as an artifact of the visualization.

A.5 Nearest neighbors based on
representation similarity

In this section we look at how the nearest neigh-
bors to languages change from their representa-
tions in the embeddings to their representations in
the top layer of the encoder. Table 1 displays a few
representative results.

The nearest neighbors of languages in high-
resource language families, like Romance lan-
guages and Germanic languages, tend to produce
quite accurate nearest neighbor lists that are sta-
ble across layers in the encoder. The example of
Spanish in Table 1 demonstrates this, producing

10Usually considered to be a register of the same language
(Siddiqi, 1994; Hammarström et al., 2017)

11In that Sindhi and Punjabi are the two representatives of
the Northwestern Indo-Aryan languages in this plot.



(a) Embeddings, colored by sub-family (b) Encoder layer 5, colored by sub-family

(c) Embeddings, colored by branch with sub-family (d) Encoder layer 5, colored by branch within sub-family

(e) Embeddings, colored by script (writing system) (f) Encoder layer 5, colored by script (writing system)

Figure 14: Visualization of the Slavic and Turkic languages, for the embeddings (left column) and the top layer of
the encoder (right column), coloring by different attributes to highlight clusters. These are to-English direction.

(at the encoder top) a remarkable list of the five
linguistically closest languages to it in our dataset.

Lower-resource languages, however, tend to
produce much noisier representations in the em-
beddings. The example of Yiddish is given in
Table 1. The nearest neighbors in the embed-
ding space are mostly nonsensical, with the ex-
ception of German. By the top of the encoder,
however, the neighbors are really quite reasonable,
and remarkable – given that Yiddish, a Germanic
language (Herzog), is written in Hebrew script,
whereas the remainder of the Germanic languages
are written in Roman script. A similar example is
Urdu, where the embeddings seem to be more in-

fluenced by less-related languages written in the
same (Arabic) script, whereas by the top of the
encoder, the neighbor list is a quite high-quality
ranking of similar languages in entirely different
scripts.

A last amusing example is Basque, a famous
language isolate hiding out amidst the Indo-
European languages in Europe. As expected from
its status as an isolate, the nearest neighbors in
the embedding space are a nonsensical mix of lan-
guages. However, by the top of the encoder the
top four nearest neighbors are those languages ge-
ographically closest to Basque country (excepting
French), probably reflecting lexical borrowing or



areal influences on Basque.

Language Rank embeddings encoder top
Yiddish 1 Lao German ??

2 German ?? Norwegian ?
3 Thai Danish ?
4 Hmong Portuguese
5 Korean Macedonian

Urdu 1 Punjabi ? Hindi ??
2 Sindhi ? Punjabi ?
3 Pashto Bengali ?
4 Hindi ?? Gujarati ?
5 Gujarati ? Marathi ?

Basque 1 Indonesian Portuguese
2 Javanese Spanish
3 Portuguese Galician
4 Frisian Italian
5 Norwegian Bosnian

Spanish 1 Catalan ? Catalan ?
2 Galician ? Portuguese ?
3 Portuguese ? Galician ?
4 Italian ? Italian ?
5 Romanian ? French ?

Table 1: Nearest Neighbors in SVCCA space for a
given source language. Languages marked with a ?
are closely related; languages marked with ?? are the
closest languages in our dataset. Italicized languages
are written in a different script. We see that the nearest
neighbors are more meaningful in the top of the en-
coder than in the embeddings, and that the embeddings
are more influenced by script.

In this example, the clusters remain about the
same throughout the encoder, with the linguistic
clusters becoming if anything a little tighter by the
top layer of the encoder (Figure 12b, 12d). Sindhi
and Urdu remain between the Indo-Aryan and Ira-
nian languages. The one notable difference is that,
whereas Sinhala (si) clusters with the Indo-Aryan
languages in the embedding layer, it is firmly in
the Dravidian cluster in the top of the encoder,
with its nearest neighbor being Tamil. This may
reflects the status of Sinhala as an Indo-Aryan lan-
guage which has been lexically and grammatically
influenced by sharing the island of Sri Lanka with
Tamil over a thousand of years, to the extent that
some earlier scholars erroneously believed the lan-
guage to be Dravidian (Coperahawa, 2007). Al-
ternately it could reflect similar subject matter of
text, related to e.g. local politics – further analysis
is required.

A.6 Finetuning Experiments

In Table 2 we list the language pairs with which we
separately finetune our models and their resource
sizes.

Resource Size Languages
Low (105−107 sentences) mr-en, km-en,

uz-en, so-en,
ky-en, ny-en,
yo-en, ha-en,
gd-en, ig-en

High (108−109 sentences) es-en, tr-en,pl-
en, ko-en, ru-en,
sr-en, uk-en, ca-
en

Table 2: Language pairs we finetune our model on. For
the purpose of our analysis, low resource languages are
language pairs whose training set contained 105 − 107

parallel sentences and high resource languages are lan-
guages pairs whose training set contained 108 − 109

parallel sentences.

Resource Size of Fine-tuning Language Pairs
Sensitivity to Fine-tuning Increases Across
Layers
In this subsection we plot the extent to which the
representation space changes on average across
language pairs (ie, decrease in SVCCA score) for
different layers in Figure 15 on finetuning with
these language pairs: ru-en (Russian), ko-en (Ko-
rean), uk-en (Ukrainian), km-en (Khmer). We see
that the latter layers change the most across both
the encoder and decoder.



Language Id Language Id Language Id Language Id
Afrikaans af Galician gl Latvian lv Sindhi sd
Albanian sq Georgian ka Lithuanian lt Sinhalese si
Amharic am German de Luxembouish lb Slovak sk
Arabic ar Greek el Macedonian mk Slovenian sl
Armenian hy Gujarati gu Malagasy mg Somali so
Azerbaijani az Haitian Creole ht Malay ms Spanish es
Basque eu Hausa ha Malayalam ml Sundanese su
Belarusian be Hawaiian haw Maltese mt Swahili sw
Bengali bn Hebrew iw Maori mi Swedish sv
Bosnian bs Hindi hi Marathi mr Tajik tg
Bulgarian bg Hmong hmn Mongolian mn Tamil ta
Burmese my Hungarian hu Nepali ne Telugu te
Catalan ca Icelandic is Norwegian no Thai th
Cebuano ceb Igbo ig Nyanja ny Turkish tr
Chinese zh Indonesian id Pashto ps Ukrainian uk
Corsican co Irish ga Persian fa Urdu ur
Croatian hr Italian it Polish pl Uzbek uz
Czech cs Japanese ja Portuguese pt Vietnamese vi
Danish da Javanese jw Punjabi pa Welsh cy
Dutch nl Kannada kn Romanian ro Xhosa xh
Esperanto eo Kazakh kk Russian ru Yiddish yi
Estonian et Khmer km Samoan sm Yoruba yo
Filipino/Tagalog tl Korean ko Scots Gaelic gd Zulu zu
Finnish fi Kurdish ku Serbian sr
French fr Kyrgyz ky Sesotho st
Frisian fy Lao lo Shona sn

Table 3: List of BCP-47 language codes used throughout this paper (Phillips and Davis, 2009).
.



(a) Change in encoder on finetuning with ru-en. (b) Change in decoder on finetuning with ru-en.

(c) Change in encoder on finetuning with ko-en. (d) Change in decoder on finetuning with ko-en.

(e) Change in encoder on finetuning with uk-en. (f) Change in decoder on finetuning with uk-en.

(g) Change in encoder on finetuning with km-en. (h) Change in decoder on finetuning with km-en.

Figure 15: Comparing average change in representation space over finetuning steps across layers for various
language pairs.


