
A Reproducibility Details of Datasets

In this section, we describe the details of the
datasets used in our experiments.

The RCV1 dataset (Lewis et al., 2004) is a man-
ually labeled newswire collection of Reuters News
from 1996 to 1997. Its news documents are cate-
gorized with three aspects: industries, topics, and
regions. We follow the original training/test split
for RCV1 and use its topic-based label hierarchy
for classification as it has been well used in prior
work (Gopal and Yang, 2013; Johnson and Zhang,
2014; Peng et al., 2018; Wehrmann et al., 2018).
There are 103 categories and four levels in total
including all labels except for the root label in the
hierarchy.

The NYT annotated corpus (Sandhaus, 2008) is
a collection of New York Times news from 1987 to
2007. Due to its large size, we randomly sampled
36,107 documents from all the news documents,
and further split them into training and test set of
25,279 and 10,828 examples, respectively. We use
the first three levels in the hierarchy and keep the
labels with at least 40 supporting examples.

For the Yelp dataset, the label hierarchy is taken
from the Yelp Business Categories6, which Fig. 2
is a subset of. For preprocessing, we first removed
categories that have fewer than 100 businesses and
then businesses that have fewer than 5 reviews. We
concatenated (at most) the first 10 reviews of each
business as its representation. We set the train-
ing/test ratio to 70%/30%, which results in a train-
ing set of 87,375 examples and a test set of 37,517
examples. This is an even more challenging task
because the reviews are usually written in an infor-
mal way and it is more imbalanced than the RCV1
or NYT datasets. For example, label Restaurants
has 32,357 businesses in the training set while Re-
tirement Homes has 23.

For the FunCat and GO datasets, we take the
cellcycle data from (Vens et al., 2008)7. Compared
with the text datasets above, raw features are pro-
vided as input for all compared methods. Further-
more, their training data is rather limited while the
label space is much larger (4,125 vs. 539). Since
there are many labels that do not have any example
in either training set or test set, we exclude such la-
bels when calculating Macro-F1. Note that it does

6
https://www.yelp.com/developers/

documentation/v3/all_category_list

7
https://dtai.cs.kuleuven.be/clus/

hmcdatasets/

not have any effect on the ratio of results from two
different methods as the F1 scores of those labels
without supporting examples are always zero. The
features provided by the datasets are taken as input
as they are except that the missing values are re-
placed with the mean value of corresponding fea-
tures. All the compared methods take the same
raw features for fair comparison.

B Performance Analysis of Baselines

There are several things to note in terms of the per-
formance of the baselines. First, our results are
not comparable to Lewis et al. (2004); Johnson
and Zhang (2014) due to implementation details
(e.g., we only take the first 256 tokens) and the
fact that they tune the threshold for each label us-
ing scutfbr (Lewis et al., 2004). According to the
implementation in LibSVM8, the scutfbr thresh-
old tuning algorithm uses two nested 3-fold cross
validation for each of the 103 labels and the clas-
sifier is trained 3⇥ 3⇥ 103 = 927 times, which is
infeasible in our case.

Secondly, we found that the original perfor-
mance of HMCN (Wehrmann et al., 2018) is
sometimes much lower than expected. After tun-
ing their model, we observed that if we first con-
duct a weighted sum of the local and global out-
puts and then apply the sigmoid function, the per-
formance of HMCN becomes much better (see Ta-
ble 7) than doing them in the opposite order as
in Wehrmann et al. (2018). In addition, we found
that HMCN + HAN (Yang et al., 2016) would re-
sult in extremely low performance. We had to
remove HMCN’s batch normalization to make it
compatible with HAN. Combining HMCN with
other base models did not encounter similar issues.

Thirdly, our implementation of TextCNN (Kim,
2014) and HAN (Yang et al., 2016) shows bet-
ter performance than those reported in Peng et al.
(2018) due to implementation details. A compari-
son can be found in Table 8.

C Details of Base Models

1. Base Models for Encoding Text Objects. For
the text classification datasets, three representative
text encoding models with different characteristics
are selected as the base models to prove the robust-
ness and versatility of HiLAP. We briefly describe

8
https://www.csie.ntu.edu.tw/˜cjlin/

libsvmtools/multilabel/

https://www.yelp.com/developers/documentation/v3/all_category_list
https://www.yelp.com/developers/documentation/v3/all_category_list
https://dtai.cs.kuleuven.be/clus/hmcdatasets/
https://dtai.cs.kuleuven.be/clus/hmcdatasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multilabel/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multilabel/


Table 7: Comparison of different implementations of HMCN.

Model RCV1 Yelp NYT
Micro-F1 Macro-F1 EBF Micro-F1 Macro-F1 EBF Micro-F1 Macro-F1 EBF

HMCN (original) 78.2 33.2 78.9 56.3 8.5 57.3 62.1 32.4 62.7
HMCN (ours) 80.8 54.6 82.2 66.4 42.7 67.6 72.2 47.4 74.2

Table 8: Comparison of different implementations of
HAN and TextCNN on the RCV1 dataset.

Model Micro-F1 Macro-F1

TextCNN (in Peng et al. (2018)) 73.2 39.9
TextCNN (ours) 76.6 43.0
HAN (in Peng et al. (2018)) 69.6 32.7
HAN (ours) 75.3 40.6

the base models and the reasons we choose them
as follows.

TextCNN (Kim, 2014) is a classic convolu-
tional neural network for text classification. In
our implementation, TextCNN is composed of one
convolutional layer with three kernels of different
sizes (3, 4, 5), followed by max pooling, dropout,
and fully-connected layers. We choose TextCNN
because it is one of the first successful and well
used neural-based models for text classification.

HAN (Yang et al., 2016) first learns the repre-
sentation of sentences by feeding words in each
sentence to a GRU-based sequence encoder (Bah-
danau et al., 2014) and then feeds the representa-
tion of the encoded sentences into another GRU-
based sequence encoder, which generates the rep-
resentation of the whole document. Attention
mechanism such as word attention and sentence
attention is also used. We choose HAN because
it uses RNNs instead of CNNs and is shown to be
effective on the flat Yelp Review datasets.

bow-CNN (Johnson and Zhang, 2014) employs
bag of words (multi-hot zero-one vectors) as input
to represent text objects and directly applies CNNs
to the high-dimensional multi-hot vectors encod-
ing. It learns the representation of small text re-
gions (rather than single words) for use in classifi-
cation. We choose bow-CNN since it does not use
any word embeddings as in TextCNN and HAN. In
addition, bow-CNN achieved state-of-the-art per-
formance RCV1 (Lewis et al., 2004).

2. Base Model for Encoding Raw Features. For
functional genomics prediction, one feed-forward
neural network is used for simplicity as raw fea-
tures are already provided in the datasets.

D Reproducibility Details of
Implementation

We implement the base models and
HMCN (Wehrmann et al., 2018) according
to the original papers and existing implemen-
tations. We use the official implementation of
Clus-HMC (Vens et al., 2008)9 and one open-
source implementation of CSSA (Bi and Kwok,
2011)10. We use scikit-learn for SVM-based
methods. TF-IDF features are used for text
classification when raw features are needed as
input.

For our framework, we specify the number of
steps in HiLAP-SL to be the number of levels in
the label hierarchy. We set the maximum number
of steps in HiLAP to be reasonably large (depend-
ing on the average number of labels of one object)
so that it could explore the hierarchy and learn
when to stop by itself. For the purpose of batch
training, we convert the original indefinite-horizon
MDPs to finite-horizon by adding an absorbing
state, i.e., after visiting the most fine-grained label
in HiLAP-SL or entering the stop state in HiLAP,
it would loop in the current state until the maxi-
mum number of steps, waiting for other objects in
the same batch to finish.

We set the size of W2
l to 500 and the sizes of W1

l
and label embedding lt to 50 in all the text classi-
fication datasets and set them to 1,000 in the other
datasets. We did not observe clear performance
changes when varying the probability of dropout
in base models like TextCNN. We set batch size to
32 as it performs well on the validation set and a
batch size as large as 128 may cause performance
losses.

E Additional Figure Illustration

9
https://dtai.cs.kuleuven.be/clus/

10
https://github.com/sushobhannayak/

cssag

https://dtai.cs.kuleuven.be/clus/
https://github.com/sushobhannayak/cssag
https://github.com/sushobhannayak/cssag


t = 0 t = 1

0

ROOT

Restaurants

Caribbean  

American Italian

Bars

Nightlife

Beer Bars Wine BarsDominican  Haitian  Puerto Rican 

0

11

ROOT

Restaurants

Caribbean  

American Italian

Bars

Nightlife

Beer Bars Wine BarsDominican  Haitian  Puerto Rican 

Figure 6: One time step in HiLAP-SL. At t = 1, two (K = 2) local per-parent probabilities pLocal
1 are measured

independently and aggregated in the loss function O1.


