
A Hyperparameters

All models use a fusion layer size of 300 and
dropout (Srivastava et al., 2014) of 0.5 is ap-
plied to the input embeddings, the joint premise-
hypothesis layer and all subsequent layers. These
layers use an embedding size of 512. Our mod-
els are trained with Adam (Kingma and Ba, 2015)
with initial learning rate of 0.003 which is ex-
ponentially decayed by 0.5 after each 10K itera-
tions. A batch size of 64 is used. Hyperparam-
eters were lightly tuned to optimize performance
on the SNLI+MultiNLI development sets and are
used for all of our experiments.

We observed that performance on the NLI de-
velopment set and downstream tasks are corre-
lated, up to a point. Beyond this, we found it’s
possible to obtain stronger models on NLI that per-
form worse on downstream evaluations, perhaps
due to overfitting towards NLI. For example, us-
ing larger fusion layer sizes can obtain better NLI
development set performance but tends to hurt on
downstream tasks.

Conneau et al. (2017) reported that training with
SGD led to increased generalization on down-
stream evaluations compared to Adam. We did not
observe this difference. We noticed models trained
with SGD did not overfit on NLI as severely, while
models trained with Adam required early stop-
ping. We observed 50K iterations of training was
sufficient for our models and beyond this overfit-
ting became an issue.

B Image-sentence retrieval

We experimented with image-sentence retrieval
evaluations on COCO (Lin et al., 2014), compar-
ing our models to existing pre-trained sentence
embedding models from Skip-thoughts (Kiros
et al., 2015), InferSent (Conneau et al., 2017) and
Multitask embeddings (Subramanian et al., 2018).
Models are evaluated using Recall@K and median
rank. All models use ResNet-152 pre-trained fea-
tures that are held fixed during training. Results
are reported in Table 4. Surprisingly, the best
performing model on average for these tasks is
(glove+news,1), which is a bag-of-words model.
It matches or outperforms Multitask on all eval-
uations and outperforms InferSent on all but one
metric (R@10).

C Evaluating binary representations

In order to determine the effectiveness of our se-
mantic hashing layer, we also evaluated binary
representations on all downstream evaluations.

We trained 3 models on NLI that are based on
(glove,3): 256,1024 and 4096-bit codes. Results
are reported in Tables 5 and 6 and include the
baseline (glove,3) 4096-dim embeddings as a ref-
erence baseline. Unsurprisingly, we observe a per-
formance hit across all tasks, with some down-
stream tasks being affected more than others. In-
terestingly, both 1024 and 4096-bit codes perform
comparable on most tasks. However, moving the
dimensionality down to 256 results in a significant
performance drop across almost all tasks. In future
work we intend to explore InferLite binary codes
for large-scale retrieval evaluations. The fact that
our binary codes still perform effectively on most
STS tasks, as well as MRPC, loosely indicates that
they should also be effective for retrieval.

D Probing tasks

We also evaluate our models on the 10 probing
tasks introduced by Conneau et al. (2018). The
goal of these evaluations is to more effectively un-
derstand what properties are encoded in generic
sentence embeddings. We refer the reader to
Conneau et al. (2018) for full task descriptions.
Some tasks, such as BShift and SOMO require
context, consequently bag-of-word models obtain
random performance. We compare our models
to InferSent as well as the GatedConv model in-
troduced in Conneau et al. (2018), which shares
many similarities to our own models. Results for
these tasks are in Table 7. Note that our models
do not make use of positional embeddings.

E Ablation study

In order to better understand which components
of our model contribute most to downstream
performance, we perform an ablation study. Here,
we consider 6 components and train InferLite with
each of these components removed, fixing the rest
of the model. Each modification we control for is
described below:

Mean Pooling. We replace max pooling reduction
with mean pooling:

s = meanpool{F}T (9)

In Conneau et al. (2017) it was shown that mean
pool performs significantly worse than max pool-
ing on downstream evaluations. This experiment
is to verify the same result holds for InferLite.



Image Annotation Image Search
Model R@1 R@5 R@10 Med r R@1 R@5 R@10 Med r

ST (Kiros et al., 2015) 37.9 72.2 84.3 2 30.6 66.2 81.0 3
InferSent (Conneau et al., 2017) 42.6 75.3 87.3 2 33.9 69.7 83.8 3
Multitask (Subramanian et al., 2018) 43.0 76.0 87.0 2 33.8 70.1 83.6 2.8

glove,1 42.6 75.9 87.0 2 33.5 69.9 83.8 2.8
glove+news,1 43.8 76.6 87.1 2 34.3 70.3 84.2 2.8
glove+query,1 43.1 76.5 87.8 2 33.6 69.6 83.7 2.8
glove+news+query,1 43.0 76.6 87.7 2 33.9 69.6 83.8 2.8

glove,3 42.6 76.8 88.0 2 33.8 69.7 83.6 2.8
glove+news,3 42.7 76.5 87.5 2 34.0 69.7 83.6 2.8
glove+query,3 43.5 76.7 87.7 2 34.2 70.1 84.1 2.6

glove+news+query,3 42.9 76.1 87.0 2 33.9 70.0 84.0 2.6

Table 4: COCO test-set results for image-sentence retrieval experiments. All models use ResNet-152 pre-trained
features. R@K is Recall@K (high is good). Med r is the median rank (low is good). Best results are bolded.

Model MR CR SUBJ MPQA SST2 TREC MRPC

semhash,256 73.7 81.2 83.2 86.2 78.4 59.0 71.6/80.9
semhash,1024 76.3 83.2 87.8 88.4 81.3 74.0 74.4/82.2
semhash,4096 77.7 83.7 89.6 89.1 82.3 78.6 74.9/82.4

glove,3 80.9 84.1 92.4 89.6 85.8 90.0 76.5/83.4

Table 5: Comparison of embedding methods on downstream evaluations. Each set of results is a) bag-of-words b)
RNN and Transformer c) ours, filter length 1 and d) ours, filter length 3. Last column is training time in hours.

Model SICK-R SICK-E STSB STS12 STS13 STS14 STS15 STS16

semhash,256 79.9 79.0 67.9/67.6 56.5 49.1 61.2 67.3 65.6
semhash,1024 82.8 82.9 64.9/64.9 59.3 51.5 67.0 71.5 70.8
semhash,4096 81.2 83.4 63.4/63.3 61.4 53.4 68.0 71.9 70.9

glove,3 88.1 85.5 78.4/78.3 61.9 61.3 71.7 74.5 71.2

Table 6: Comparison of embedding methods on downstream evaluations. Each sets of results are a) bag-of-words
b) RNN encoders c) ours, filter length 1 d) ours, filter length 3.

Model Len WC Depth TopConst BShift Tense SubjNum ObjNum SOMO CoordInv

BoV-fastText 54.8 91.6 32.3 63.1 50.8 87.8 81.9 79.3 50.3 52.7

BiLSTM-Max NLI 65.1 87.3 38.5 67.9 63.8 86.0 78.9 78.5 59.5 64.9
GatedConv NLI 70.9 29.2 38.8 59.3 66.8 80.1 77.7 72.8 69.0 69.1

glove,1 63.5 92.9 33.3 74.1 49.8 84.4 77.8 74.0 51.6 54.8
glove+news,1 62.8 95.1 33.8 74.5 50.6 84.7 78.1 75.6 51.0 55.1
glove+query,1 62.2 95.1 33.6 75.1 50.3 83.7 77.4 74.1 51.2 55.3
glove+news+query,1 63.3 95.2 34.0 75.0 50.7 84.5 78.0 75.3 51.3 54.2

glove,3 63.3 88.3 33.5 75.9 57.2 84.0 78.6 74.0 52.1 61.2
glove+news,3 63.4 90.3 34.1 77.8 59.7 84.8 78.4 74.7 51.4 60.8
glove+query,3 62.7 90.5 34.4 77.5 59.6 85.4 77.7 73.6 51.8 60.6
glove+news+query,3 62.3 90.7 33.6 78.1 59.6 83.6 78.7 74.9 51.7 60.5

Table 7: Results on probing tasks. All comparisons use logistic regression for training on each task.



(a) Mean pooling (b) No Skip connection

(c) No gating (d) M = 1 convolutional layer

(e) No embedding norm (f) No time-distributed layers

Figure 3: Ablation study results. G stands for Glove, N stands for News and Q stands for Query embeddings.



No skip connection. In the fusion layer, the skip
connection is removed:

F
0 =

KX

k=1

H
k
M �G

k
M (10)

F = �f (WfF
0 + bf ) (11)

While this is a simple modification, we show the
resulting fusion layer has a dramatic effect on
downstream performance.

No gating. The embeddings of each individ-
ual component are summed without applying any
multiplicative gating:

F
0 =

 
KX

k=1

H
k
M

!
+G

c
0 (12)

F = �f (WfF
0 + bf ) (13)

In this case, the entire gating module is removed
with the exception of Gc

0.

1 convolutional layer. We use M = 1 convolu-
tional layers instead of M = 3.

No embedding normalization. All embeddings
are left unnormalized.

No translation (time-distributed) layers. All
time-distributed layers originating from the input
embeddings are removed.

The results of this study are in Figure 3. We
plot the performance difference of InferLite with
the ablation version. Positive results indicate that
the original InferLite model performs better, while
negative results indicate that the ablation performs
better. We observe that max-pooling and the skip
connection is critical to the InferLite model. The
effect of gating and convolutional (M = 3) gener-
ally helps overall. However, embedding normal-
ization and time-distributed layers help in some
tasks but hurt in others.

F Inference speed

For this experiment, we report timing results for
encoding 1 million sentences from the 1 Billion
word benchmark (Chelba et al., 2013), which has
an average word length of 25. We use the seman-
tic hashing version of InferLite (glove,3), running
locally on a single TitanXp GPU with a batch size
of 512 sequences. Table 8 reports the InferLite in-
ference speeds for various dimensions. Reported

times do not include time to sort sequences by
word length.

Dimension Samples / Second

256 11.9k/sec
1024 11.4k/sec
4096 9.8k/sec

Table 8: InferLite inference speed.

G Gating visualizations

Figure 4 shows examples of mean gate acti-
vations across words for 6 sentences, using our
(glove+news+query,3) model. In all cases, news
embeddings tend to have the highest mean activa-
tion. Note how the mean activation values change
across words for different sentences, for example
‘man’, ‘a’ and ‘.’ all tend to have different acti-
vation values depending on the sentence. Models
that do not use context would have fixed activation
values for each word independent of other words
in the sentence.



Figure 4: Visualizations of mean gate activations for each word in several sentences from the NLI development
set. First (red) bar is Glove, second (green) bar is News and the third (blue) bar is Query.


