
Appendix A for the paper (Basile and Tamburini, 2017):
Calculations of the Probability Function and its Gradient

in a Quantum Language Model

1 Starting Formulae
In this section we recall the relevant definitions used in the main paper (Basile and Tamburini,
2017). We work in the Hilbert space Hancilla ⊗ Hsystem = CD ⊗ CN = CDN . We use an or-
thonormal basis {|w〉} for Hsystem where each vector is labelled by a word w ∈ {1, ..., N}. On
Hsystem, we define orthogonal projectors Πw on each basis vector (strictly speaking the span
thereof). Their matrix components read (Πw)ij = δiwδjw, i, j = 1, ..., N . Notice that in this
expression we canonically identify each word w with its corresponding number.

Using the projectors Πw on Hsystem we define projector on the full Hilbert space by

Π(2)
w = ID ⊗Πw. (1)

The state of the model is encoded in a density matrix ρ, a positive semidefinite matrix of
unit trace, Tr(ρ) = 1. The dynamics are described by unitary evolution operators.

1.1 Unitary Evolution Operators
As explained in the main paper, we used a set {V (w)}w∈{1,...,N} of unitary operators, one for
each word, which are constructed using a smaller set of p unitary operators {U1, ..., Up}, denoted
in the following with an array U = (U1, ..., Up), and an embedding α : {1, ..., N} → Rp.

The embedding is used to construct real vectors α(w) = (α1(w), ..., αp(w)), and the compo-
nents of these vectors are used to build the set of evolution operators in the following fashion:

w 7→ V (w) =

p∏
i=1

U
αi(w)
i . (2)

1.2 Probability Function
Equipped with this structure, we recall the final formula for the probability function Pn(U) ≡
P (w|U) for the occurence of a sequence w = (w1, ..., wn) of words

Pn(U) = Tr(Π(2)
wn
...V †(w2)Π(2)

w2
V †(w1)Π(2)

w1
ρ0Π(2)

w1
V (w1)Π(2)

w2
V (w2)...Π(2)

wn
). (3)

The p(DN)2 real parameters of the model are encoded in the arrayU, while the initial density
matrix ρ0 of the system is specified by a maximum-likelihood estimation on initial words in the
training corpus.
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2 Calculations
In this section we provide details on the calculations we used to considerably simplify the com-
putation of Pn(U), as well as an exact expression for its unconstrained gradient, namely the
gradient with respect to the parameters without constraining any matrix Uj to be unitary. For
the reader’s convenience, we first state the final results.

2.1 Simplified Formula for the Probability
We obtained a formula for Pn(U) in terms of products of D ×D matrices

Pn(U) = Tr(T †RT ), (4)

where T = T (2)T (3)...T (n) and each matrix in the product is given by the entries

T
(k)
i,j = [V (wk−1)]Ni+wk−1,Nj+wk

,

where i, j = 0, ..., D − 1. We used indices starting from 0 for convenience. The matrix R is
given by the entries

Ri,j = (ρ0)Ni+w1,Nj+w1
.

2.2 The Gradient
Finally, the gradient is defined as follows: expanding U 7→ U + tZ for small t one gets an
expression of the form

Pn(U + tZ) = Pn(U) + tRe(Z†G) +O(t2), (5)

where Z†G ≡
∑p
j=1 Z

†
jGj and the gradient G is given in components by a complicated for-

mula. In order to state the formula we first define a few ingredients.

In addition to the matrices R and T (k), we need D ×ND matrices Qk, k = 1, ..., n defined
by the entries

(Qk)jA ≡ δNj+wk,A,

with indicies j = 0, ..., D − 1 and A = 1, ..., DN . We construct the following truncations of
the evolution operators, labelled lesser and greater products respectively.

V <j(w) ≡
j−1∏
i=1

U
αi(w)
i ,

V >j(w) ≡
n∏

i=j+1

U
αi(w)
i .

Then, we introduce a spectral decomposition for each matrix Uj as Uj = SjDjS
†
j , whose

existence is guaranteed by the spectral theorem being unitary matrices also normal as well. The
diagonal matrices Dj = diag(u1, ..., uND) contain the eigenvalues of Uj . Finally, we define the
following matrices Cj(α), constructed in terms of these eigenvalues.
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[Cj(α)]AB =
uA

α − uBα

uA − uB
if uA 6= uB

[Cj(α)]AB = αuA
α−1 if uA = uB

where the overline denotes complex conjugation. We can now state the formula for the
gradient components Gj

Gj = 2Sj

n∑
k=2

{[
S†j

(
V <j(wk−1)†QTk−1

( k−1∏
l=2

T (l)
)†
RT
( n∏
l=k+1

T (l)
)†
QkV

>j(wk−1)†
)
Sj

]
·Cj(αj(wk−1))

}
S†j

(6)
where · denotes entrywise matrix multiplication.

3 Details of the calculations
In this section we proceed to show details of the calculations that lead to equations (4) and (6).

3.1 Calculations for the Probability
Starting from equation (3), we make use of the fact that projectors are idempotent, that is
(Π

(2)
w )2 = Π

(2)
w . Also, in order not to overload the notation, we define Πk ≡ Π

(2)
wk and Vk ≡ V (w2).

Doubling each projector inside the trace, except the first and last, equation (3) becomes

Pn(U) = Tr
(

(ΠnV
†
n−1Πn−1)(Πn−1V

†
n−2Πn−2)...(Π2V

†
1 Π1)(Π1ρ0Π1)(Π1V1Π2)...(Πn−1Vn−1Πn)

)
= Tr

(
(Πn−1Vn−1Πn)†(Πn−2Vn−2Πn−1)†...(Π1V1Π2)†(Π1ρ0Π1)(Π1V1Π2)...(Πn−1Vn−1Πn)

)
= Tr

(
((Π1V1Π2)...(Πn−1Vn−1Πn))†(Π1ρ0Π1)(Π1V1Π2)...(Πn−1Vn−1Πn)

)
.

(7)

We are thus led to look at the matrices (Πk−1Vk−1Πk). In components, using indices
A,B,C,D = 1, ..., DN they are given by

(Πk−1Vk−1Πk)AB = (Πk−1)AC(Vk−1)CD(Πk)DB ,

using the convention of summing over repeated indices for convenience. In order to work
with projectors defines as tensor products we employ composite indices A → (i, a), where i =
0, ..., D − 1 and a = 1, ..., N . Specifically the map is given by A = Ni + a. Doing the same for
each index we end up with

(Πk−1)AC(Vk−1)CD(Πk)DB = δikδa,wk−1
δc,wk−1

(Vk−1)Nk+c,Nl+dδljδd,wk
δb,wk

= (Vk−1)Ni+wk−1,Nj+wk
δa,wk−1

δb,wk

≡ T (k)
ij δa,wk−1

δb,wk

≡ T (k)
ij θ

(k−1,k)
ab .

(8)
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It is easy to check that the matrices θ(k−1,k) satisfy θ(k−1,k)θ(k,k+1) = θ(k−1,k+1) and θ(k,k) =
Πwk

, the N ×N projector on the system space only. The last remaining factor in equation (7)
can be computed in the same fashion

(Π1ρ0Π1)AB = (P1)AC(ρ0)CD(Π1)DB

= δikδa,w1δc,w1(ρ0)Nk+c,Nl+dδljδd, w1δb, w1

(ρ0)Ni+w1,Nj+w1δa, w1δb, w1

≡ Rij(Πw1)ab.

(9)

We see that the trace in equation (7) factorises into the product of a trace on the D-
dimensional ancilla space and a trace on the N -dimensional system space. This trace gives
1, leaving us with equation (4). Substituting equations (8) and (9) into the trace we get

Pn(U) = Tr
(

((Π1V1Π2)...(Πn−1Vn−1Πn))†(Π1ρ0Π1)(Π1V1Π2)...(Πn−1Vn−1Πn)
)

= TrD(T †RT )TrN ((θ1,2)θ2,3...θn−1,n)†Πw1
(θ1,2)θ2,3...θn−1,n)

= TrD(T †RT )TrN (θn,1θ1,1θ1,n)

= TrD(T †RT )TrN (θn,n)

= TrD(T †RT ),

(10)

thus recovering equation (4).

3.2 Calculations for the Gradient
The calculation of the gradient is more involved. It can be broken down in various steps, owing to
the complicated functional dependence of the probability on the parameters: a trace of products
of submatrices of products of (arbitrary real!) powers of the Uj matrices. In the following,
to compute the generic component Gj of the gradient, we perform the Taylor expansion (5)
deforming only Uj 7→ Uj + tZ, leaving all the other matrices invariant. This means that, in the
many products that appear in the formulae, one is forced to employ what essentially is Leibniz’s
rule, in the schematic form

n∏
j=1

(Aj + tBj) =

n∏
j=1

Aj + t

n∑
k=1

(∏
j<k

Aj

)
Bk

(∏
j>k

Aj

)
+O(t2). (11)

This is where much of the structure in equation (6) comes from. We will use this formula a
lot in the computation.

3.2.1 Setup

The ’lowest layer’ of dependence is also the most complicated to Taylor expand for small deforma-
tions of Uj : real powers of the form U

αj(w)
j , which appear in each evolution operator in products,

are not trivial to differentiate or Taylor expand when Uj is a matrix. Indeed, the expansion
involved a double Taylor series and various rearrangings, as well as the spectral decompositions
for the Uj . This step is where the entrywise product in equation (6) and the matrices Cj(α)

4



show up. For now, let us first simply denote the result of the expansion of these matrix powers
as

U
αj(w)
j = U

αj(w)
j + tBj(w) +O(t2), (12)

so that we can use the matrices Bj(w) to compute the gradient. The last step will be the
computation of Bj(w).

3.2.2 Derivation of the formula

We now move on to expanding the formula for Pn(U) for small deformations Uj 7→ Uj + tZ,
leaving all the other matrices Ui, i 6= j invariant. We use the matrices Bj(w) defined in (12)
before moving on to their computation for clarity. Given Bj(w), the remaining steps are in fact
nothing but expanding products of matrices and then taking the trace. In order to put the final
result in the canonical form (5) we will also need to make use of properties of the trace.

The first ingredient to expand are the matrices T (k) which make up the product T . Recall
that each matrix T (k) is a submatrix of Vk−1, which is expanded to

Vk−1 =

p∏
i=1

U
αi(wk−1)
i 7→

p∏
i=1

U
αi(wk−1)
i + t

(∏
i<j

U
αi(wk−1)
i

)
Bj(wk−1)

(∏
i>j

U
αi(wk−1)
i

)
+O(t2)

= Vk−1 + tV <j(wk−1)Bj(wk−1)V >j(wk−1) +O(t2).

(13)

Denoting with square brackets [V <j(wk−1)Bj(wk−1)V >j(wk−1)] the relevant submatrix which
defines the variation of T (k), we can proceed to compute the variation of the product T 7→
T + tδT +O(t2) with the formula (11)

T = T (2)...T (n) 7→ T + t

n∑
k=2

(
k−1∏
l=2

T (l)

)
[V <j(wk−1)Bj(wk−1)V >j(wk−1)]

(
n∏

l=k+1

T (l)

)
+O(t2).

(14)
In order to work with submatrices it is useful to use the matrices Qk defined in Section 2. It

is in fact easy to check the formula [M ]Ni+wk,Nj+wl
= [QkMQTl ]ij for any N × N matrix M).

In this fashion we can rewrite the variation, which will be substituted in the following formulae,
as

δT =

n∑
k=2

(
k−1∏
l=2

T (l)

)
Qk−1V

<j(wk−1)Bj(wk−1)V >j(wk−1)QTk−1

(
n∏

l=k+1

T (l)

)
Finally, the trace in equation (4) can be expanded in the following fashion:

Tr(T †RT ) 7→ Tr(T †RT ) + tTr((δT )†)RT ) + tTr(T †)RδT ) +O(t2)

= Tr(T †RT ) + tRe
(
2Tr((δT )†RT )

)
+O(t2),

(15)

where we used the property Tr(A†B) = (Tr(B†A)) in order to put the variation in a form
akin to that of equation (5). To do this in a complete fashion we will also make use of the ciclicity
Tr(AB) = Tr(BA), but first we move on to the computation of Bj(w).
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3.2.3 Variation of the Matrix Power

What is left is to compute the variation of the real matrix power, which in this section we denote
as Uα to avoid notation overload. The key point is that, having to work with matrices, we have
to use the definition Uα = exp(α lnU), where to define the logarithm we will have to use the
analytic continuation of the Taylor series

lnU ≡
∞∑
n=1

(−1)n+1

n
(U − I)n.

Convergence of this series in the operator norm puts conditions on U which are not satisfied
in general, even at zeroth order in Z: U has eigenvalues of the form eiθ which lie on the unit
circle in the complex plane. Nevertheless we can proceed by working with suitable U , because
the end result is free of logarithms and can be thus analytically continued to unitary U . Let us
now proceed in the Taylor expansion. We have

(U + tZ)α = exp(α ln(U + tZ)),

and the logarithm, using (11) and the spectral expansion U = SDS† with unitary S, is
expanded to

ln(U + tZ) =

∞∑
n=1

(−1)n+1

n
(U − I + tZ)n

= lnU + t

∞∑
n=1

(−1)n+1

n

n∑
k=1

(U − I)k−1Z(U − I)n−k +O(t2)

= lnU + tS

[ ∞∑
n=1

(−1)n+1

n

(
n∑
k=1

(D − I)k−1(S†ZS)(D − I)n−k

)]
S† +O(t2).

(16)

We now face the task of evaluating the sum in the round brackets and then the series in the
square brackets. The finite sum can be evaluated using index notation, and this is where the
entrywise multiplication comes in. Using indices A,B = 1, ..., DN as in our conventions, the AB
entry of the matrix sum in round brackets is given by

(
n∑
k=1

(D − I)k−1(S†ZS)(D − I)n−k

)
AB

=

n∑
k=1

(uA − 1)k−1(S†ZS)AB(uB − 1)n−k

=

(
n∑
k=1

(uA − 1)k−1(uB − 1)n−k

)
(S†ZS)AB ,

(17)

which is then expressed as the entrywise product of (S†ZS) and the matrix in the round
brackets. For different eigenvalues uA 6= uB we get
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n∑
k=1

(uA − 1)k−1(uB − 1)n−k =

(
n∑
k=1

(uA − 1

uB − 1

)k−1)
(uB − 1)n−1

=

(
uA−1
uB−1

)n
− 1(

uA−1
uB−1

)
− 1

(uB − 1)n−1

=
(uA − 1)n − (uB − 1)n

uA − uB
,

(18)

while for equal eigenvalues uA = uB we get what is expected by taking the limit uA → uB

n∑
k=1

(uA − 1)k−1(uA − 1)n−k = n(uA − 1)n−1. (19)

This property is preserved when we then sum the series by uniform convergence of the Taylor
series (which we then have to analytically continue at the end), as one can verify explicitly, to
get the expression in the round brackets. Leaving out the entrywise multiplication with (S†ZS),
the entries of the matrix series are thus

∞∑
n=1

(−1)n+1

n

(
n∑
k=1

(uA − 1)k−1(uB − 1)n−k

)
=

lnuA − lnuB
uA − uB

if uA 6= uB

=
1

uA
if uA = uB

≡ LAB ,

(20)

and from this it follows that the matrix in square brackets in (16) is the entrywise multipli-
cation L · (S†ZS). We can now substitute this result in the exponential. Using (11) yet again in
the Taylor series of the exponential (which has an infinite radius of convergence), we get

exp(α ln(U + tZ)) = exp
(
α lnU + αtS

(
L · (S†ZS)

)
S† +O(t2)

)
=

∞∑
n=0

αn

n!

(
lnU + tS

(
L · (S†ZS)

)
S†
)n

+O(t2)

= Uα + t

∞∑
n=0

αn

n!

n∑
k=1

(lnU)k−1
[
S
(
L · (S†ZS)

)
S†
]
(lnU)n−k +O(t2).

(21)

We can perform the same kind of steps we used before to evaluate the series, ending up with
entrywise multiplication. Using the spectral expansion for the logarithm, (lnU)k = S(lnD)kS†,
we get

∞∑
n=0

αn

n!

n∑
k=1

(lnU)k−1
[
S
(
L · (S†ZS)

)
S†
]
(lnU)n−k = S

[ ∞∑
n=0

αn

n!

n∑
k=1

(lnD)k−1
[(
L · (S†ZS)

)]
(lnD)n−k

]
S†

(22)
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and the sum with the diagonal matrix D, in entries, is evaluated to

[
n∑
k=1

(lnD)k−1
[
S
(
L · (S†ZS)

)
S†
]
(lnD)n−k

]
AB

=

(
n∑
k=1

(lnuA)k−1(lnuB)n−k

)(
L · (S†ZS)

)
AB

=

(
n∑
k=1

( lnuA
lnuB

)k−1)
(lnuB)n−1

(
L · (S†ZS)

)
AB

=

(
(lnuA)n − (lnuB)n

lnuA − lnuB

)(
L · (S†ZS)

)
AB

if uA 6= uB

= n(lnuA)n−1
(
L · (S†ZS)

)
AB

if uA = uB .

(23)

Inserting (23) in the series, we finally get

Uα 7→ Uα + tSMS† +O(t2), (24)

where the matrix M is defined, in entries by,

MAB =

(
uαA − uαB

lnuA − lnuB

)
LAB(S†ZS)AB if uA 6= uB

= αuαALAB(S†ZS)AB if uA = uB

= C(α)†AB(S†ZS)AB = [C(α)† · (S†ZS)]AB

(25)

where we used the definition of the matrix C(α), omitting the j index which we restore
in tue full formula to denote that we put U = Uj in the above calculations. In order to put
the expansion as in (5), we need the adjoint of an entrywise product. It is easy to verify that
(A ·B)†) = A† ·B†. This ends the calculation of the variation of the matrix power, which yields
the matrices Bj(w) in the form

Bj(w) = Sj [Cj(α(w))† · (S†jZSj)]S
†
j .

3.2.4 Putting everything together

We are finally ready to compute the gradient components Gj . Equation (15) gives us the (first
order) variation of Pn(U) as

Pn(U) 7→ Pn(U) + tRe(2Tr
(
(δT )†RT

)
+O(t2) (26)

and we computed

δT =

n∑
k=2

(
k−1∏
l=2

T (l)

)
Qk−1V

<j(wk−1)Bj(wk−1)V >j(wk−1)QTk−1

(
n∏

l=k+1

T (l)

)

as well as the matrices Bj(w) = Sj [Cj(α(w))† · (S†jZSj)]S
†
j . Thus we need to compute the

adjoint
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(δT )† =

n∑
k=2

(
n∏

l=k+1

T (l)

)†
Qk−1V

>j(wk−1)†Bj(wk−1)†V <j(wk−1)†QTk−1

(
k−1∏
l=2

T (l)

)†

and the adjoint of Bj(w), which is given by Bj(w)† = Sj [Cj(α(w)) · (S†jZ†Sj)]S
†
j . The full

expression for the variation (δT )† that we shall insert into (26) then reads

(δT )† =

n∑
k=2

(
n∏

l=k+1

T (l)

)†
Qk−1V

>j(wk−1)†Sj [Cj(α(wk−1))·(S†jZ
†Sj)]S

†
jV

<j(wk−1)†QTk−1

(
k−1∏
l=2

T (l)

)†
.

(27)
The form of equation (27) translates into a variation for the probability of the schematic form

Re

n∑
k=2

2Tr
(
Ak
[
Ck · (S†Z†S)

]
Bk
)
,

and has to be put into a form where Z† is to the left of everything else inside the trace. In
order to do this we focus on the trace inside the sum. Using index notation, and the fact that
the matrices Cj(α(wk−1)) (which is represented by Ck in the schematic expression above) are
symmetric, we get

Tr
(
Ak
[
Ck · (S†Z†S)

]
Bk
)

= Tr
(

(BkAk)
[
Ck · (S†Z†S)

])
= (BkAk)AB

[
Ck · (S†Z†S)

]
AB

= (BkAk)AB(Ck)BA(S†)BC(Z†)CD(S)DA

= (Z†)CD(S)DA(BkAk)AB(Ck)AB(S†)BC

= (Z†)CD(S)DA[(BkAk) · Ck]BA(S†)BC

= Tr
(
Z†S[(BkAk) · Ck]S†

)
.

(28)

All that remains now is to substitute the matricesAk,Bk into the variation, which corresponds
to the gradient G = 2

∑n
k=2 S[(BkAk) ·Ck]S† in schematic notation. In particular, these matrices

can be read off from (26) and (27) as

Ak =

(
n∏

l=k+1

T (l)

)†
Qk−1V

>j(wk−1)†Sj

Bk = S†jV
<j(wk−1)†QTk−1

(
k−1∏
l=2

T (l)

)†
RT

and substituting in the above formula finally leads to

Gj = 2Sj

n∑
k=2

{[
S†j

(
V <j(wk−1)†QTk−1

( k−1∏
l=2

T (l)
)†
RT
( n∏
l=k+1

T (l)
)†
QkV

>j(wk−1)†
)
Sj

]
·Cj(αj(wk−1))

}
S†j

(29)
which is the equation (6).
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