
This supplementary material consists of several
appendices. The main paper can be understood with-
out them; but for the curious reader, the appendices
provide additional background, details, results, anal-
ysis, and discussion (see also (Dreyer, 2011)). Each
appendix is independent of the others, since different
appendices may be of interest to different readers.

A Dirichlet Process Mixture Models

Section 4 noted that morphology induction is rather
like the clustering that is performed by inference
under a Dirichlet process mixture model (Antoniak,
1974). The DPMM is trivially obtained from the
Dirichlet process (Ferguson, 1973), on which there
are many good tutorials. Our purpose in this appendix
is

• to briefly present the DPMM in the concrete
setting of morphology, for the interested reader;

• to clarify why and how we introduce abstract
lexemes, obtaining a minor technical variant of
the DPMM (section A.5).

The DPMM provides a Bayesian approach to non-
parametric clustering. It is Bayesian because it speci-
fies a prior over the mixture model that might have
generated the data. It is non-parametric because that
mixture model uses an infinite number of mixture
components (in our setting, an infinite lexicon).

Generating a larger data sample tends to select
more of these infinitely many components to generate
actual data points. Thus, inference tends to use more
clusters to explain how a larger sample was generated.
In our setting, the more tokens in our corpus, the
more paradigms we will organize them into.

A.1 Parameters of a DPMM
Assume that we are given a (usually infinite) set L
of possible mixture components. That is, each ele-
ment of L is a distribution `(w) over some space of
observable objects w. Commonly `(w) is a Gaussian
distribution over points w ∈ Rn. In our setting, `(w)
is a weighted paradigm, which is a distribution (one
with finite support) over strings w ∈ Σ∗.

Notice that we are temporarily changing our no-
tation. In the main paper, ` denotes an abstract lex-
eme that is associated with a spelling πt,`(s) and a
probability Ht,`(s) for each slot s ∈ St. For the

moment, however, in order to present the DPMM,
we are instead using ` to denote an actual mixture
component—the distribution over words obtained
from these spellings and probabilities. In section A.5
we will motivate the alternative construction used in
the main paper, in which ` is just an index into the
set of possible mixture components.

A DPMM is parameterized by a concentration
parameter α > 0 together with a base distribution
G over the mixture components L. Thus, G states
what typical Gaussians or weighted paradigms ought
to look like.21 (What variances σ2 and means µ are
likely? What affixes and stem changes are likely?) In
our setting, this is a global property of the language
and is determined by the grammar parameters ~θ.

A.2 Sampling a Specific Mixture Model

To draw a specific mixture model from the DPMM
prior, we can use a stick-breaking process. The idea
is to generate an infinite sequence of mixture com-
ponents `(1), `(2), . . . as IID samples from G. In our
setting, this is a sequence of weighted paradigms.

We then associate a probability βk > 0 with each
component, where

∑∞
k=1 βk = 1. These βk probabil-

ities serve as the mixture weights. They are chosen
sequentially, in a way that tends to decrease. Thus,
the paradigms that fall early in the `(k) sequence tend
to be the high-frequency paradigms of the language.
These ` values do not necessarily have high prior
probability under G. However, a paradigm ` that is
very unlikely under G will probably not be chosen
anywhere early in the `(k) sequence, and so will end
up with a low probability.

Specifically: having already chosen β1, . . . , βk−1,
we set βk to be the remaining probability mass
1−∑k−1

i=1 βi times a random fraction in (0,1) that is
drawn IID from Beta(1, α).22 Metaphorically, hav-
ing already broken k − 1 segments off a stick of
length 1, representing the total probability mass, we
now break off a random fraction of what is left of the
stick. We label the new stick segment with `(k).

This distribution β over the integers yields a dis-
tribution Gt over mixture components: Gt(`) =

21The traditional name for the base distribution is G0. We
depart from this notation since we want to use the subscript
position instead to distinguish draws from the DPMM, e.g., Gt.

22Equivalently, letting β′k be the random fraction, we can
define βk = β′k ·

∏k−1
i=1 (1− β′i).

Supplementary material for: Markus Dreyer & Jason Eisner (2011),
“Discovering morphological paradigms from plain text using a Dirichlet process mixture model,”

Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)

∑
k:`(k)=` βk, the probability of selecting a stick seg-

ment labeled with `. Clearly, this probability is posi-
tive if and only if ` is in {`(1), `(2), . . .}, a countable
subset of L that is countably infinite provided that G
has infinite support.

As Sethuraman (1994) shows, thisGt is distributed
according to the Dirichlet process DP(G,α). Gt is
a discrete distribution and tends to place its mass
on mixture components that have high probability
under G. In fact, the average value of Gt is exactly
G. However, Gt is not identical to G, and different
samples Gt will differ considerably from one another
if α is small.23 In short,G is the mean of the Dirichlet
process while α is inversely related to its variance.

A.3 α for a Natural Language Lexicon
We expect α to be relatively small in our model,
since a lexicon is idiosyncratic: Gt does not look
too much like G. Many verb paradigms ` that would
be a priori reasonable in the language (large G(`))
are in fact missing from the dictionary and are only
available as neologisms (small Gt(`)). Conversely,
irregular paradigms (small G(`)) are often selected
for frequent use in the language (large Gt(`)).

On the other hand, small α implies that we will
break off large stick segments and most of the proba-
bility mass will rapidly be used up on a small number
of paradigms. This is not true: the distribution over
words in a language has a long tail (Zipf’s Law).
In fact, regardless of α, Dirichlet processes never
capture the heavy-tailed, power-law behavior that is
typical of linguistic distributions. The standard solu-
tion is to switch to the Pitman-Yor process (Pitman
and Yor, 1997; Teh, 2006), a variant on the Dirichlet
process that has an extra parameter to control the
heaviness of the tail. We have not yet implemented
this simple improvement.

A.4 Sampling from the Mixture Model
The distribution over paradigms, Gt, gives rise to
a distribution over words, pt(w) =

∑
`Gt(`) c(w).

To sample a word w from this distribution, one can
sample a mixture component ` ∼ Gt and then a point
w ∼ `. This is what sections 6.6–6.8 do. To generate
a whole corpus of n words, one must repeat these
two steps n times.

23As α→ 0, the expected divergence KL(Gt||G)→ H(G).
As α→∞, on the other hand, the expected KL(Gt||G)→ 0.

For simplicity of notation, let us assume that t is
fixed, so that all words are generated from the same
Gt (i.e., they have the same part-of-speech tag).24

Thus, we need to sample a sequence
`1, `2, . . . , `n ∼ Gt. Is there a way to do this
without explicitly representing the particular infinite
mixture model Gt ∼ DP(G,α)? It does not matter
here that each `i is a mixture component. What
matters is that it is a sample ` from a sample Gt
from a Dirichlet process. Hence we can use standard
techniques for working with Dirichlet processes.

The solution is the scheme known as a Chinese
restaurant process (Blackwell and MacQueen, 1973;
Aldous, 1985), as employed in section 6.9. Our n IID
draws from Gt are conditionally independent given
Gt (by definition), but they become interdependent
if Gt is not observed. This is because `1, . . . , `i−1
provide evidence about whatGt must have been. The
next sample `i must then be drawn from the mean of
this posterior over Gt (which becomes sharper and
sharper as i increases and we gain knowledge of Gt).

It turns out that the posterior mean assigns to each
` ∈ L a probability that is proportional to t(`) +
αG(`), where t(`) is the number of previous samples
equal to `. The Chinese restaurant process samples
from this distribution by using the scheme described
in section 6.9.

For a given `, each table in the Chinese restaurant
labeled with ` corresponds to some stick segment k
that is labeled with `. However, unlike the stick seg-
ment, the table does not record the value of k. It also
does not represent the segment length βk—although
the fraction of customers who are sitting at the table
does provide some information about βk, and the
posterior distribution over βk gets sharper as more
customers enter the restaurant. In short, the Chinese
restaurant representation is more collapsed than the
stick-breaking representation, since it does not record
Gt nor a specific stick-breaking construction of Gt.

A.5 Lexemes
We now make lexemes and inflections into first-class
variables of the model, which can be inferred (sec-
tion 7), directly observed (Appendix C), modulated
by additional factors (Appendix G), or associated

24Recall that in reality, we switch among several Gt, one
for each part-of-speech tag t. In that case, we use Gti when
sampling the word at position i.

with other linguistic information. The use of first-
class lexemes also permits polysemy, where two
lexemes remain distinct despite having the same
paradigm.

If we used the DPMM directly, our inference proce-
dure would only assign a paradigm `i to each corpus
token i. Given our goals of doing morphological anal-
ysis, this formalization is too weak on two grounds:

• We have ignored the structure of the paradigm
by treating it as a mere distribution over strings
(mixture component). We would like to recover
not only the paradigm that generated token i
but also the specific responsible slot si in that
paradigm.

• By tagging only with a paradigm and not with a
lexical item, we have failed to disambiguate ho-
mographs. For example, `i says only that drew
is a form of draw. It does not distinguish be-
tween drawing a picture and drawing a sample,
both of which use the same paradigm.25

Regarding the second point, one might object that
the two senses of drew could be identified with dif-
ferent weighted paradigms, which have the same
spellings but differ slightly in their weights. How-
ever, this escape hatch is not always available. For
example, suppose we simplified our model by con-
straining Ht,` to equal Ht. Then the different senses
of draw would have identical weighted paradigms,
the weights being imposed by t, and they could no
longer be distinguished. To avoid such problems,
we think it is prudent to design notation that refers
directly to linguistic concepts like abstract lexemes.

Thus, we now switch to the variant view we pre-
sented in the main paper, in which each ` ∈ L is
an abstract lexeme rather than a mixture component.
We still have Gt ∼ DP(G,α), but now G and Gt
are distributions over abstract lexemes. The particu-
lar mixture components are obtained by choosing a
structured paradigm πt,` and weights Ht,` for each
abstract lexeme ` (sections 6.3–6.4). In principle, se-

25Of course, our current model is too weak to make such
sense distinctions successfully, since it does not yet consider
context. But we would like it to at least be able to represent
these distinctions in its tagging. In future work (Appendix G)
we would hope to consider context, without overhauling the
framework and notation of the present paper.

mantic and subcategorization information could also
be associated with the lexeme.

In our sampler, a newly created Chinese restaurant
table ought to sample a label ` ∈ L from G. This is
straightforward but turns out to be unnecessary, since
the particular value of ` does not matter in our model.
All that matters is the information that we associated
with ` above. In effect, ` is just an arbitrary pointer
to the lexical entry containing this information. Thus,
in practice, we collapse out the value ` and take the
lexical entry information to be associated directly
with the Chinese restaurant table instead.26

We can identify lexemes with Chinese restaurant
tables in this way provided that G has no atoms (i.e.,
any particular ` ∈ L has infinitesimal probability
under G), as is also true for the standard Gaussian
DPMM. Then, in the generative processes above, two
tables (or two stick segments) never happen to choose
the same lexeme. So there is no possibility that a
single lexeme’s customers are split among multiple
tables. As a result, we never have to worry about
combining customers from multiple tables in order to
estimate properties of a lexeme (e.g., when estimating
its paradigm by loopy belief propagation).

For concreteness, we can take lexeme space L to
be the uncountable set [0, 1] (see footnote 9), and let
G be the uniform distribution over [0, 1]. However,
these specific choices are not important, provided
that G has no atoms and the model does not make
any reference to the structure of L.

B Graphical Model Diagram

We provide in Fig. 3 a drawing of our graphical
model, corresponding to section 6.

The model is simpler than it appears. First, the
variables Dt, Ht, G, and wi are merely determinis-
tic functions of their parents. Second, several of the
edges denote only simple “switching variable” depen-
dencies. These are the thin edges connecting corpus
variables `i, si, wi to the corpus variables above them.
For example, `i is simply sampled from one of the
Gt distributions (section 6.6)—but specifically from
Gti , so it also needs ti as a parent (thin edge). In the

26So, instead of storing the lexeme vector ~̀, which associates
a specific lexeme with each token, we only really store a partition
(clustering) that says which tokens have the same lexeme. The
lexemes play the role of cluster labels, so the fact that they are
not identifiable and not stored is typical of a clustering problem.

� ∈ L

t ∈ T

Ht,�Ht

φt Dt

θ

Gt

ti−1 ti

�i

si

wi

i = 1..n

base

G
base

πt,l

α�
t

τ

Lexicon

Corpus

αt

Figure 3: A graphical model drawing of the generative
model. As in Fig. 2, type variables are above and token
variables are below. Grammar variables are in blue. Al-
though circles denote random variables, we label them
with values (such as `i) to avoid introducing new notation
(such as Li) for the random variables.

same way, si is sampled from Hti,`i , and wi deter-
ministically equals πti,`i(s).
wi is observed, as shown by the shading. However,

the drawing does not show some observations men-
tioned in section 8.1. First, πt,` is also observed for
certain seed paradigms (t, `). Second, our present
experiments also constrain ti (to a value predicted by
an automatic tagger), and then consider only those i
for which ti = VERB.

C Incorporating Known Paradigms

To constrain the inference and training, the method
is given a small set of known paradigms of the lan-
guage (for each tag t). This should help us find a
reasonable initial value for ~θ. It can also be given a
possibly larger set of incomplete known paradigms
(section 7.2). In this appendix, we describe how this
partial supervision is interpreted and how it affects
inference.

Each supervised paradigm, whether complete or

incomplete, comes labeled with a lexeme such as
�b&r��a�k. (Ordinarily these lexemes are distinct but that
is not required.) This labeling will make it possible
to inspect samples from the posterior and evaluate
our system on how well it completed the incomplete
paradigms of known lexemes (section 8.1), or used
known lexemes to annotate word tokens.

In our experiments, each incomplete paradigm
specifies only the spelling of the lemma inflection.
This special inflection is assumed not to be generated
in text (i.e., Ht(lemma) = 0). Our main reason for
supplying these partial paradigms is to aid evaluation,
but it does also provides some weak supervision. Ad-
ditional supervision of this kind could be obtained
through uninflected word lists, which are available
for many languages.

Another source of incomplete paradigms would
be human informants. In an active learning setting,
we might show humans some of the paradigms that
we have reconstructed so far, and query them about
forms to which we currently assign a high entropy or
a high value-of-information.

At any rate, we should condition our inference on
any data that we are given. In the standard semi-
supervised setting, we would be given a partially
annotated corpus (token data), and we would run the
Gibbs sampler with the observed tags constrained to
their observed values. However, the present setting is
unusual because we have been given semi-supervised
type data: a finite set of (partial) paradigms, which is
some subset of the infinite lexicon.

To learn from this subset, we must augument our
generative story to posit a specific process for how
the subset was selected. Suppose the set has kt
semi-supervised paradigms for tag t. We assume
that their lexemes were sampled independently (with
replacement) from the language’s distribution Gt.
This assumption is fairly reasonable for the CELEX
database that serves as our source of data. It implies
that these lexemes tend to have reasonably high prob-
ability within the infinite lexicon. Without some such
assumption, the subset would provide no information,
as footnote 14 explains.27

27The generative story also ought to say how kt was chosen,
and how it was determined which inflectional slots would be ob-
served for each lexeme. However, we assume that these choices
are independent of the variables that we are trying to recover,
in which case they do not affect our inference. In particular,

It is easy to modify the generative process of sec-
tion 6 to account for these additional observed sam-
ples from Gt. Once we have generated all tokens in
the corpus, our posterior estimate of the distribution
Gt over lexemes is implicit in the state of the Chinese
restaurant t. To sample kt additional lexemes from
Gt, which will be used for the supervised data, we
simply see where the next kt customers would sit.

The exchangeability of the Chinese restaurant pro-
cess means that these additional kt customers can
be treated as the first customers rather than the last
ones. We call each of these special customers a
host because it is at a table without actually tak-
ing any particular inflectional seat. It just stands
by the table—reserving it, requiring its label to be
a particular lexeme such as �b&r��a�k,28 and welcom-
ing any future customer that is consistent with the
complete or incomplete supervised paradigm at this
table. In other words, just as an ordinary customer
in a seat constrains a single spelling in the table’s
paradigm, a host standing at the table constrains the
table’s paradigm to be consistent with the complete
or incomplete paradigm that was observed in semi-
supervised data.

To modify our Gibbs sampler, we ensure that
the state of a restaurant t includes a reserved ta-
ble for each of the distinct lexemes (such as �b&r��a�k)
in the semi-supervised data. Each reserved table
has (at least) one host who stands there permanently,
thus permanently constraining some strings in its
paradigm. Crucially, the host is included when count-
ing customers at the table. Notice that without the
host, ordinary customers would have only an infinites-
imal chance of choosing this specific table (lexeme)
from all of L, so we would be unlikely to complete
this semi-supervised paradigm with corpus words.

The M step is essentially unchanged from the ver-
sion in Appendix D. Notice that ~θ will have to ac-
count for the partial paradigms at the reserved tables
even if only hosts are there (see footnote 30). The
hosts are counted in nt in Equation (D) when estimat-
ing αt. However, as they are not associated with any

we assume that the inflectional slots are missing completely at
random (MCAR), just as annotations are assumed to be MCAR
in the standard semi-supervised setting.

28Other tables created during Gibbs sampling will not have
their label constrained in this way. In fact, their labels are col-
lapsed out (Appendix A.5).

inflectional seat, they have no effect on estimating α′t
or ~φ. In particular, within Equation (2), interpret nt,`
as
∑

s nt,`,s, which excludes hosts.

D Optimizing the Grammar Parameters

Our model has only a finite number of grammar pa-
rameters that define global properties of the language
(section 6.1). We can therefore maximize their poste-
rior probability

log p(observations | parameters)+log p(parameters)
(1)

as defined by section 6. This is a case of MAP esti-
mation or empirical Bayes.

The log probability (1) uses the marginal proba-
bility of the observations, which requires summing
over the possible values of missing variables. But in
the case of complete data (no missing variables), (1)
takes a simple form: a sum of log probabilities for the
different factors in our model. It still takes a simple
product form even if the data are complete only with
respect to the collapsed model of section 6.9, which
does not include variables Gt and Ht,`. This product
uses the Chinese restaurant process.

When the observations are incomplete, the Monte
Carlo EM method can still be used to seek a local
maximum by alternating between

• E step: imputing more complete observa-
tions (~w,~s, ~̀,~t) by sampling from the posterior
p(~s, ~̀,~t | ~w, ~θ, . . .)
• M step: optimizing ~θ to locally maximize the

average log-probability (1) of these samples.

Since the M step is working with complete samples,
it is maximizing the log of a product. This decom-
poses into a set of separate supervised maximization
problems, as follows.

It is straightforward to train the tag sequence
model τ from samples of ~T (section 6.5).

For the collapsed model of lexeme sequences (sec-
tion 6.9), we train the αt values. From the probability
of obtaining the lexeme sequence ~̀ given ~t under the
Chinese restaurant process, it is easy to show that

log p(~̀ | ~t, αt) = rt logαt−
nt−1∑

i=0

log(i+αt)+const29

29The constant accounts for probability mass that does not
depend on αt.

where rt is the number of tables in restaurant t and
nt is the number of customers in restaurant t. This
quantity (and, if desired, its derivative with respect to
αt) may be easily found from ~t and ˆ̀for each of our
samples. Maximizing its average over our samples is
a simple one-dimensional optimization problem.

For the collapsed model of inflection sequences
(section 6.9), we similarly train α′t for each t, and
also ~φ. We see from the Chinese restaurant process
in section 6.9 that

log p(~s | ˆ̀,~t, ~φ, α′t)

=
∑

`

∑

s∈St

nt,`,s−1∑

i=0

log(i+ α′tHt(s))

−
nt,`−1∑

i=0

log(i+ α′t)

+ const (2)

where ` ranges over the rt tables in restaurant t,
and nt,` is the number of customers at table `, of
which nt,`,s are in seat s. The summation over s
may be restricted to s such that nt,`,s > 0. Recall
that Ht is the base distribution over seats: Ht(s) ∝
exp(~φ · ~f(s)). For a given value of ~φ and hence Ht,
we can easily compute quantity (2) and its gradient
with respect to αt. Its gradient with respect to ~φ is
α′t
∑

s∈St(cs− cHt(s))~f(s), for c =
∑

s′∈St cs′ and

cs = Ht(s)
∑

`

nt,`,s−1∑

i=0

1

i+ α′tHt(s)

Finally, we estimate the parameters ~θ of our prior
distribution Dt over paradigms of the language (sec-
tion 6.2), to maximize the total log-probability of the
partially observed paradigms at the tables in restau-
rant t (averaged over samples). This can be done with
belief propagation, as explained by Dreyer and Eisner
(2009). Crucially, each table represents a single par-
tially observed sample ofDt, regardless of how many
customers chose to sit there.30 The training formulas
consider our posterior distributions over the spellings

30In other words, ~θ generates types, not tokens. Each of the
uncountably many lexemes prefers to generate a paradigm that is
likely under ~θ (section 6.2), so the observation of any lexeme’s
paradigm provides information about ~θ. The fact that some
tables have higher probability is irrelevant, since (at least in our
model) a lexeme’s probability is uncorrelated with its paradigm.

at the empty seats. In general, however, a table with
many empty seats will have less influence on ~θ, and a
completely empty table contributes 0 to our total-log-
probability objective. This is because the probability
of a partially observed paradigm marginalizes over
its unseen spellings.

E More Detailed Experimental Results

E.1 Statistics About the Inference Process

Here we briefly list some statistics that give a feel for
what is going on during inference. We have 5,415
reserved tables corresponding to the test paradigms
(see Appendix C), as well as infinitely many addi-
tional tables for lexemes that may have appeared in
the corpus but did not appear in test data.

We consider a single sample from inference over
10 million words, and a single sample from inference
over 1 million words. The average reserved table had
88 customers in the former case and 11 customers in
the latter. Many reserved tables remained completely
empty (except for the host lemma)—1,516 tables and
2,978 tables respectively. Furthermore, most inflec-
tional seats remained empty—respectively 96,758
seats and 107,040 seats, among the 113,715 total
seats at the reserved tables (21 per table).

E.2 Results by Inflection

Tables 5 and 6 are additions to Table 2. They respec-
tively report whole-word accuracy and edit distance,
split by the different forms that were to be predicted.

There is an important remark to make about the in-
ventory of forms. Notice that in cases of syncretism,
where two forms are always identical in German
(e.g., the 1st- and 3rd-person plural indicative past),
CELEX uses only a single paradigm slot (e.g., 13PIA)
for this shared form. This convention provides ad-
ditional linguistic knowledge. It means that our ~θ
model does not have to learn that these forms are
syncretic: when one form is irregular, then the other
is forced to be irregular in exactly the same way.

Without this convention, our results would have
suffered more from the simplified star-shaped graphi-
cal model given at the end of section 2.2. That model
assumes that forms are conditionally independent
given the lemma. So among other things, it cannot
capture the fact that if a particular verb lemma has
a surprising 1PIA form, then its 3PIA form will be

50 seed paradigms 100 seed paradigms
Form 0 106 107 0 106 107

13PIA 74.8 78.3 81.5 81.4 82.0 84.7
13PIE 100.0 99.9 99.8 100.0 99.9 99.8
13PKA 74.7 77.8 82.0 81.2 81.6 83.6
13PKE 99.9 99.9 99.7 99.9 99.8 99.7
13SIA 84.2 84.8 84.6 85.8 85.7 83.5
13SKA 83.5 87.7 88.0 86.2 87.5 88.2
13SKE 99.8 98.11 98.7 99.7 99.7 99.4
1SIE 99.6 99.3 98.2 99.5 99.5 98.6
2PIA 84.0 81.8 82.0 85.9 84.9 85.3
2PIE 98.1 99.2 99.2 98.1 99.3 99.3
2PKA 83.0 79.6 77.2 85.2 85.4 84.4
2PKE 99.9 99.9 99.8 99.9 99.9 99.9
2SIA 83.8 83.3 82.5 85.8 86.0 86.0
2SIE 91.1 91.6 91.9 94.2 94.5 94.6
2SKA 82.2 82.4 82.7 85.0 85.3 85.1
2SKE 99.9 99.9 99.9 99.9 99.9 99.9
3SIE 93.9 95.8 95.9 94.4 95.8 95.9
pA 59.8 67.8 70.8 63.4 69.1 70.8
pE 99.4 99.4 99.4 99.4 99.4 99.4
rP 97.8 98.6 98.3 98.1 99.1 99.1
rS 98.7 98.4 97.9 98.7 99.0 98.9
all 89.9 90.6 90.9 91.5 92.0 92.2

Table 5: Whole-word accuracy on recovering various in-
flections. Abbreviations are from CELEX (Baayen et
al., 1995); for example, 13PIA means 1st or 3rd Plural
Indicative pAst. The numbers 0, 106 and 107 denote the
size of the corpus used. We boldface the best result from
each 3-way comparison, as well as those that are not sig-
nificantly worse (paired permutation test, p < 0.05).

surprising in exactly the same way. Capturing syn-
cretism and other correlations among inflected forms
would require a more sophisticated MRF topology as
studied by (Dreyer and Eisner, 2009; Dreyer, 2011).
Syncretism in particular is pervasive in morphology:
for example, an English verb’s past-tense forms are
all identical (except for was/were), and the fact that
English does not make certain morphological dis-
tinctions at all (e.g., gender) could be regarded as
massive syncretism of English on some universal
grid for inflectional paradigms.

E.3 Error Analysis

In section 8.2, we saw that adding a corpus helps, but
the model still makes some prediction errors, even for
some regular verbs, which occur often in the corpus.
To explain this, we look at some of these errors.

Table 7 shows some typical errors that are made
in the zero-corpus model and corrected by using a
corpus. The listed errors are on novel words. Most er-

50 seed paradigms 100 seed paradigms
Form 0 106 107 0 106 107

13PIA 0.42 0.36 0.32 0.34 0.32 0.29
13PIE 0.00 0.00 0.00 0.00 0.00 0.00
13PKA 0.43 0.37 0.32 0.35 0.34 0.31
13PKE 0.00 0.00 0.00 0.00 0.00 0.00
13SIA 0.43 0.41 0.39 0.40 0.39 0.40
13SKA 0.34 0.28 0.27 0.30 0.27 0.27
13SKE 0.00 0.01 0.01 0.00 0.00 0.00
1SIE 0.01 0.01 0.02 0.01 0.00 0.01
2PIA 0.39 0.42 0.44 0.36 0.38 0.37
2PIE 0.02 0.00 0.00 0.02 0.00 0.00
2PKA 0.33 0.38 0.43 0.31 0.30 0.34
2PKE 0.00 0.00 0.00 0.00 0.00 0.00
2SIA 0.39 0.39 0.42 0.36 0.36 0.37
2SIE 0.10 0.09 0.09 0.07 0.06 0.06
2SKA 0.34 0.34 0.34 0.31 0.30 0.31
2SKE 0.00 0.00 0.00 0.00 0.00 0.00
3SIE 0.07 0.05 0.05 0.07 0.05 0.05
pA 0.91 0.74 0.68 0.84 0.71 0.69
pE 0.01 0.00 0.00 0.01 0.00 0.00
rP 0.02 0.01 0.01 0.02 0.00 0.00
rS 0.02 0.02 0.03 0.02 0.01 0.01
all 0.20 0.19 0.18 0.18 0.17 0.17

Table 6: Average edit distance of the predicted morpho-
logical forms to the truth. The format is the same as in
Table 5.

rors are due to an incorrect application of an irregular
rule that was learned from the seed paradigms. The
models trained on a corpus learn not to apply these
rules in many cases. The seed paradigms are not
very representative since they are drawn uniformly
at random from all types in CELEX.31 But from a
corpus the model can learn that some phenomena are
more frequent than others.

The converse pattern also exists. Even though
adding a corpus to to the seed paradigms results in a
higher prediction accuracy overall, it can introduce
some errors, as shown in Table 8. Here, often a form
that is found in the corpus is used instead of the
correct one.

For example, the past participle form of bitzeln was
predicted to be besselt. The correct form would be
gebitzelt, but that does not occur in the corpus, while
besselt does occur. The pair (bitzeln, besselt) is also
morphologically somewhat plausible considering the
correct pair (sitzen, gesessen) in German.32 Simi-

31In the future, we might want to experiment with more repre-
sentative seed paradigms.

32In both pairs, we have the changes i→ e and tz→ ss.

Form Error (no corpus) Correct Explanation
aalen, 2PIA aieltest aaltest ie as in (halten, hieltest)
flügeln, pA flügelt geflügelt no ge- as in (erinnern, erinnert)
welken, pA gewolken gewelkt wrong analogy to (melken, gemolken)
prüfen, 2SIA prüfst prüftest no -te- as in (rufen, riefst)

Table 7: Novel words and typical errors that a no-corpus model makes. These errors are corrected in the model that has
learned from a corpus. Most errors come from an incorrect application of some irregular rule picked up from the seed
paradigms (see the Explanation column).

Form Error (corpus) Correct Explanation
bitzeln, pA besselt gebitzelt wrong analogy (see text)
ringeln, 13SIE riegle ring(e)le unclear; incorrect rule
silieren, 13PIA salierten silierten salierten is observed
bearbeiten, 2SIA bearbeitest bearbeitetest bearbeitest is frequent

Table 8: Novel words and typical errors that a corpus model makes. These errors are not made by the no-corpus baseline
model. Often, a spelling that can be found in the corpus was preferred instead of the correct spelling.

larly, salierten was predicted as a past-tense form of
silieren. The correct form silierten does not occur in
the corpus, while salierten does. Salierten is some-
what plausible due to the common i→ a change, as
in (bitten, baten), so the morphological grammar did
not give a very strong signal to prevent salierten from
being (mis-)placed in the silieren paradigm.

Overall, the errors in Table 8 help explain why the
edit distance results in Table 2 improve by only small
fractions while the corresponding whole-word accu-
racy improvements are greater: The corpus models
make fewer errors, but the erors they do make can be
more severe. In some cases, the corpus component
may force a corpus token into a paradigm slot where
the finite-state parameters otherwise would have gen-
erated a spelling that is closer to the truth. On the
other hand, we have seen that the corpus is often help-
ful in providing evidence on how highly to weight
certain irregular constructions in the morphological
grammar.

F Evaluation Details

In this section we explain how the token-based evalu-
ation of section 8.2 was conducted. For each (lexeme,
inflection) pair (`, s), we needed to estimate the fre-
quency of (`, s) in our 10-million-word corpus to
determine which bin it fell into. Since our corpus
tokens were not morphologically tagged with (`, s)
analyses, we guessed the correct tags with the help

of additional supervised type data.33

Let ~w denote the 10-million-word corpus. For each
word wi, we wish to guess (`i, si). We exploited all
of the 5,615 CELEX paradigms, many more than we
used when training. For 99.5% of the spellings in
these paradigms, the paradigm ` is uniquely deter-
mined. Therefore, we simplified by only learning a
model to get the distribution over the slot s.

Each verb position in the corpus has a spelling wi
that is consistent with a typically small number of
different inflections, Si, as observed in the CELEX
paradigms. For many of the spellings (37.9%), s is
uniquely determined, |Si| = 1. On average |Si| =
2.0.

We picked a simple model, since the task is almost
entirely supervised and we do not need to predict the
exact tags, only an estimate of how often each tag
occurs.

Define a log-linear distribution over the slots,
p~λ(s) ∝ exp(~λ · ~g(s)), where the features extracted
by ~g are the obvious properties of the different inflec-
tions and combinations thereof, e.g., (3rd-person);
(singular); (3rd-person singular); etc. The full in-

33As described above, the morphological paradigms that we
predict are taken from the CELEX morphological database.
These forms in those paradigms do have frequency counts at-
tached, but they are not useful for our purposes since they are
just spelling frequencies. If various morphological forms have
the same spelling they all get the same count.

flection form (e.g., 3rd-person singular indicative) is
always a feature as well.

We assumed that the correct slot sequence {si}
was generated from this unigram model. The corpus
{wi} together with CELEX gives us partial infor-
mation about this correct slot sequence, namely that
each si ∈ Si. We therefore fit the parameters ~λ by
maximizing the regularized log-likelihood of these
partial observations:

argmax
~λ

∑

i

log
∑

si∈Si
p~λ(si)−

1

2σ2
||~λ||2

We arbitrarily fixed σ2 = 10 and run 100 iterations
of stochastic gradient descent.34 This can be imple-
mented in less than 50 lines of Perl code.

After training ~λ, we computed for each i the poste-
rior distribution over the possible inflections, namely
p(si = s | si ∈ Si) ∝ p~λ(s) for s ∈ Si, and oth-
erwise is 0. We used these posteriors together with
`i to estimate the expected counts of each (`, s) in
the corpus. For the very few words whose possible
morphological analyses allow more than one lexeme,
we assumed a uniform posterior over `i.

G Future Work: Considering Context

We believe our basic model (see section 6) is a solid
starting point for a principled generative account of
inflectional (and derivational) morphology. This ap-
pendix sketches one important direction for future
work.

Context is important for morphological disam-
biguation (Smith et al., 2005). It is particularly
important for unsupervised learning of morphology,
since there may be several types of external (“syntag-
matic”) as well as internal (“paradigmatic”) clues
to the correct analysis of a word, and these can
effectively bootstrap one another during learning
(Yarowsky and Wicentowski, 2000).

In particular, inflections can be predicted to some
extent from surrounding inflections, lexemes, and
tags. In English, for example, verbs tend to agree
with their preceding nouns. We see that broken is a
past participle because like other past participles, it
is often preceded by the lexeme �h�a�v� (or simply by
the particular word has, a surface pattern that might

34We also tried σ2 = 5 and found it did not significantly affect
the outcome.

be easier to detect in earlier stages of learning). Im-
mediate context is also helpful in predicting lexemes;
for example, certain verb lexemes are associated with
particular prepositions.

Lexemes are also influenced by wide context.
singed is not a plausible past tense for sing, be-
cause it is associated with the same topics as singe,
not sing (Yarowsky and Wicentowski, 2000).

How can we model context? It is easy enough to
modulate the probability of the sampler state using
a finite number of new contextual features whose
weights can be learned. These features might con-
sider inflections, tags, and common words. For ex-
ample, we might learn to lower the probability of
sampler states where a verb does not agree in number
with the immediately preceding noun. This is sim-
ply a matter of multiplying some additional factors
into our model (section 6) and renormalizing. This
yields a Markov random field (MRF), some of whose
factors happen to be distributions over lexemes. The
sampler is essentially unchanged, although training
in a globally normalized model is more difficult; we
expect to use contrastive divergence for training (Hin-
ton, 2002).

It is more difficult to incorporate lexeme-specific
feature templates. These would lead to infinitely
many feature weights in our non-parametric model,
leading to overfitting problems that cannot be solved
by regularization. Such feature weights must be inte-
grated out. Three basic techniques seem to be avail-
able. We can use richer nonparametric processes that
still allow collapsed sampling—e.g., we can use a Hi-
erarchical Dirichlet Process (Teh et al., 2006) to make
lexeme probabilities depend on a latent topic, or a
Distance-Dependent CRP (Blei and Frazier, 2010)
to make lexeme probabilities depend on an arbitrary
notion of context. We can multiply together several
simple nonparametric processes, thus generating the
lexemes by a product of experts. As a last resort,
we can always do uncollapsed sampling, which inte-
grates over arbitrary lexeme-specific parameters by
including their values explicitly in the state of our
MCMC sampler. The sampler state only needs to
represent the parameters for its finitely many non-
empty tables, but reversible-jump MCMC techniques
(Green, 1995) must be used to correctly evaluate the
probability of moves that create or destroy tables.

