Supplementary Materials

A Proof of the Two Bounds for the Information Bottleneck

A.1 The Lower Bound for I(Z; Y)

$$I(Z;Y) = \sum_{y,z} p(y,z) \log \frac{p(y,z)}{p(y)p(z)}$$

= $\sum_{y,z} p(y,z) \log \frac{p(y \mid z)}{p(y)}$
= $\sum_{y,z} p(y,z) \log p(y \mid z) - \sum_{y,z} p(y,z) \log p(y)$
(10)

$$\sum_{y,z} p(y,z) \log p(y \mid z)$$

$$= \sum_{y,z} p(y,z) \log \frac{p(y \mid z)q_{\phi}(y \mid z)}{q_{\phi}(y \mid z)}$$

$$= \sum_{y,z} p(y,z) \log q_{\phi}(y \mid z) + \sum_{z} p(z) \text{KL}[p(y \mid z) || q_{\phi}(y \mid z)]$$

$$\geq \sum_{y,z} p(y,z) \log q_{\phi}(y \mid z)$$
(11)

$$I(Z;Y) \ge \sum_{y,z} p(y,z) \log q_{\phi}(y \mid z) - \sum_{y,z} p(y,z) \log p(y)$$
$$= \sum_{y,z} p(y,z) \log \frac{q_{\phi}(y \mid z)}{p(y)}$$
$$= \sum_{y,z,r} p(r,y,z) \log \frac{q_{\phi}(y \mid z)}{p(y)}$$
$$= \sum_{y,z,r} p(r,y) p(z \mid r) \log \frac{q_{\phi}(y \mid z)}{p(y)}$$
(12)

A.2 The Upper Bound for I(Z; R)

$$I(Z; R) = \sum_{r,z} p(r, z) \log \frac{p(r, z)}{p(r)p(z)}$$

= $\sum_{r,z} p(r, z) \log \frac{p(z \mid r)}{p(z)}$
= $\sum_{r,z} p(r, z) \log p(z \mid r) - \sum_{r,z} p(r, z) \log p(z)$
(13)

By replacing p(z) with a prior distribution of z, $r_{\psi}(z)$, we have

$$\sum_{r,z} p(r,z) \log p(z) \ge \sum_{r,z} p(x,z) \log r_{\psi}(z)$$
(14)

Then we can obtain an upper bound of I(Z; R),

$$I(Z; R) \leq \sum_{r, z} p(r, z) \log p(z \mid r) - \sum_{r, z} p(r, z) \log r_{\psi}(z)$$
$$= \sum_{r} p(r) \operatorname{KL}[p(z \mid r) \| r_{\psi}(z)]$$
$$= \mathbb{E}_{p(r)}[\operatorname{KL}[p(z \mid r) \| r_{\psi}(z)]]$$
(15)

Dataset	0	1	2	3	4	5
Twitter	70.75	71.62	70.96	70.67	71.06	70.98
AG News	91.88	91.75	92.04	91.97	91.69	91.78
SST-1	46.29	46.61	47.42	47.10	46.92	46.88
SST-2	84.73	84.62	85.61	86.22	86.11	85.94
Subj	90.80	91.10	90.80	90.30	90.70	90.40
Trec	91.00	91.20	91.60	92.00	92.40	92.80
IMDB	88.16	88.98	88.22	88.84	88.14	88.60
Yelp	95.06	95.32	95.12	95.04	94.99	94.57

Table 7: The accuracy of our LSTM-VAT model with different iteration number.

Dataset	0	1	2	3	4	5
Twitter	74.84	75.26	77.71	77.13	76.68	76.76
AG News	93.41	93.50	93.43	93.71	93.20	93.34
SST-1	51.13	51.58	51.86	51.99	51.54	51.22
SST-2	91.16	91.21	91.43	91.93	91.98	91.76
Subj	96.20	96.20	96.10	96.70	96.40	96.30
Trec	96.40	96.80	97.20	96.80	96.80	96.40
IMDB	91.81	92.06	92.11	92.09	91.92	91.96
Yelp	97.20	97.35	97.36	97.28	97.32	97.27

Table 8: The accuracy of our BERT-VAT model with different iteration number.

Figure 9: Visualization of sentence representation obtained from LSTM-ATT and LSTM-VAT. We use t-SNE to transfer 100-dimensional feature space into two-dimensional space.

Figure 10: Visualization of sentence representation obtained from BERT-ATT and BERT-VAT. We use t-SNE to transfer 768-dimensional feature space into two-dimensional space.

Figure 14: The influence of Top-K for BERT-based models in terms of Post-hoc.

Figure 15: Visualization of sentence representation obtained from LSTM-VAT with different iterations. We use t-SNE to transfer 100-dimensional feature space into two-dimensional space.

Figure 16: Visualization of sentence representation obtained from BERT-VAT with different iterations. We use t-SNE to transfer 768-dimensional feature space into two-dimensional space.