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1 More Data Statistics

We present the statistics of accumulative percent-
age of different lengths for targets, opinion spans
and offsets in the training data on 4 datasets
14Rest, 14Rest, 15Rest and 16Rest in Fig-
ure 1. As we mentioned in the main paper, similar
patterns are observed on accumulative statistics on
these 4 datasets. We also present the statistics of
the number of targets with a single opinion span
and with multiple opinion spans, and the number
of opinion associated with a single target span and
with multiple target spans, shown in Table 1.

1 2 3 4 5 6 7 8 9
20

30

40

50

60

70

80

90

100

target

opinion Span

offset

(a) 14Rest
1 2 3 4 5 6 7 8 9

20

30

40

50

60

70

80

90

100

target

opinion Span

offset

(b) 14Lap

1 2 3 4 5 6 7 8 9
20

30

40

50

60

70

80

90

100

target

opinion Span

offset

(c) 15Rest
1 2 3 4 5 6 7 8 9

20

30

40

50

60

70

80

90

100

target

opinion Span

offset

(d) 16Rest

Figure 1: Accumulative percentage (y-axis) in the train-
ing data of different lengths (x-axis) for targets, opin-
ion spans and offsets on the 4 datasets.

2 Experimental Details

We test our model on Intel(R) Xeon(R) Gold 6132
CPU, with PyTorch version 1.40. The average
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run time is 3300 sec/epoch, 1800 sec/epoch, 1170
sec/epoch, 1600 sec/epoch on 14Rest, 14Rest,
15Rest and 16Rest datasets respectively when
M = 6. The total number of parameters is 2.5M.

For hyper-parameter, we use pre-trained 300d
GloVe (Pennington et al., 2014) to initialize the
word embeddings. We use 100 as the embed-
ding size of wr (offset embedding). For out-of-
vocabulary words as well as wr, we randomly sam-
ple their embeddings from the uniform distribution
U(−0.1, 0.1), as done in (Kim, 2014). We use the
bi-directional LSTM with the hidden size 300. We
train our model for a maximal of 20 epochs us-
ing Adam (Kingma and Ba, 2014) as the optimizer
with batch size 1 and dropout rate 0.5 for datasets
in restaurant domain and 0.7 for laptop domain.
We manually tune the dropout rate from 0.4 to 0.7,
and select the best model parameters based on the
best F1 score on the development data and apply
it to the test data for evaluation. For experiments
with contextualised representation, we adopt the
pre-trained language model BERT (Devlin et al.,
2019). Specifically, we use bert-as-service (Xiao,
2018) to generate the contextualized word embed-
ding without fine-tuning. We use the representation
from the last layer of the uncased version of BERT
base model for our experiments.

3 Experimental Results

Table 2 presents the experimental result on the pre-
vious released dataset by (Peng et al., 2019).

4 Decoding based on Viterbi

Let T = {Bε
j,k, S

ε
j,k, I, E,O} as the new tag set

under our position-aware tagging scheme, where
ε denotes the sentiment polarity for the target, and
j, k indicate the position information which are the
distances between the two ends of an opinion span
and the starting position of a target respectively.



Dataset # of Target with # of Target with # of Opinion with # of Opinion with
One Opinion Span Multiple Opinion Spans One Target Span Multiple Target Spans

14Rest
Train 1809 242 1893 193
Dev 433 67 444 59
Test 720 128 767 87

14Lap
Train 1121 160 1114 154
Dev 252 44 270 34
Test 396 67 420 54

15Rest
Train 734 128 893 48
Dev 180 33 224 12
Test 385 47 438 23

16Rest
Train 1029 169 1240 67
Dev 258 38 304 15
Test 396 56 452 23

Table 1: Statistics of 4 datasets.

Models 14Rest 14Lap 15Rest 16Rest
Dev F1 P. R. F1 Dev F1 P. R. F1 Dev F1 P. R. F1 Dev F1 P. R. F1

CMLA+ - 40.11 46.63 43.12 - 31.40 34.60 32.90 - 34.40 37.60 35.90 - 43.60 39.80 41.60
RINANTE+ - 31.07 37.63 34.03 - 23.10 17.60 20.00 - 29.40 26.90 28.00 - 27.10 20.50 23.30
Li-unified-R - 41.44 68.79 51.68 - 42.25 42.78 42.47 - 43.34 50.73 46.69 - 38.19 53.47 44.51
Peng et al. (2019) - 44.18 62.99 51.89 - 40.40 47.24 43.50 - 40.97 54.68 46.79 - 46.76 62.97 53.62

JETt (M = 2) 47.06 70.00 34.92 46.59 35.00 63.69 23.27 34.08 47.13 64.80 27.91 39.02 42.32 70.76 35.91 47.65
JETt (M = 3) 56.15 73.15 43.62 54.65 43.72 54.18 30.41 38.95 53.23 66.52 33.19 44.28 50.50 66.35 44.95 53.59
JETt (M = 4) 57.47 70.25 49.30 57.94 43.19 57.46 31.43 40.63 58.05 64.77 42.42 51.26 53.57 68.79 48.82 57.11
JETt (M = 5) 59.15 66.20 49.77 56.82 45.47 59.50 33.88 43.17 59.37 64.14 40.88 49.93 54.16 66.86 50.32 57.42
JETt (M = 6) 59.51 70.39 51.86 59.72 45.83 57.98 36.33 44.67 60.00 61.99 43.74 51.29 55.88 68.99 51.18 58.77

JETo (M = 2) 45.02 66.30 35.38 46.14 33.01 50.43 23.88 32.41 46.80 58.88 25.49 35.58 40.33 60.47 39.14 47.52
JETo (M = 3) 53.14 62.31 43.16 50.99 38.99 55.37 33.67 41.88 54.59 55.99 38.02 45.29 47.87 69.45 46.45 55.67
JETo (M = 4) 58.19 63.84 52.44 57.58 40.87 49.86 36.33 42.03 57.14 57.57 42.64 48.99 53.99 73.98 54.41 62.70
JETo (M = 5) 57.94 64.31 54.99 59.29 43.23 52.36 40.82 45.87 59.51 52.02 48.13 50.00 56.08 66.91 58.71 62.54
JETo (M = 6) 58.66 62.26 56.84 59.43 42.50 52.01 39.59 44.96 60.32 63.25 46.15 53.37 55.63 66.58 57.85 61.91

+ Contextualized Word Representation (BERT)
JETt (M = 6)+ BERT 61.01 70.20 53.02 60.41 49.07 51.48 42.65 46.65 62.96 62.14 47.25 53.68 60.41 71.12 57.20 63.41
JETo (M = 6)+ BERT 60.86 67.97 60.32 63.92 45.76 58.47 43.67 50.00 64.12 58.35 51.43 54.67 60.17 64.77 61.29 62.98

Table 2: The experimental results on the previous released datasets ASTE-Data-V1. The underlined scores indicate
the best results on the dev set, and the highlighted scores are the corresponding test results.

As we know, |j| ≤ |k| ≤M , ε ∈ {+, 0,−}.

O(|T |) = O(|ε|M2) = O(M2)

We define the sub-tags of Bε
j,k, S

ε
j,k as B and S

respectively, and the sub-tags of I,O,E as them-
selves. We use the bar on top to denote the sub-tag.
For example, ū is the subtag of u ∈ T .

We use π(i, v) to denote the score for the opti-
mal sequence {y∗1 · · ·y∗i } among all the possible
sequences whose last tag is v.

Given the input x of length n, we aim to obtain
the optimal sequence y∗ = {y∗1 · · ·y∗n}.

• Base Case for all the v ∈ T
If v ∈ {I, E,O}:

π(1, v) = ψSTART,v̄ + ft(h1)v̄

If v ∈ {Bε
j,k, S

ε
j,k}:

π(1, v) = ψSTART,v̄ + Φv(x, 1)

= ψSTART,v̄ + ft(h1)v̄

+ fs([g1+j,1+k;
←−
h1])ε + fo(g1+j,1+k)

+ fr(j, k)

where ft(hi)v̄, fs([g1+j,1+k;
←−
h1])ε,

fo(g1+j,1+k), and fr(j, k) are the fac-
torized feature score mentioned in the section
2.2.2.

• Loop forward for i ∈ {2, · · · , n} and all the
v ∈ T
If v ∈ {I, E,O}:
π(i, v) = max

u∈T
{π(i− 1, u) + ψū,v̄ + ft(hi)v̄}



If v ∈ {Bε
j,k, S

ε
j,k}:

π(i, v) = max
u∈T
{π(i− 1, u) + ψū,v̄ + Φv(x, i)}

= max
(u∈T ; j,k∈[−M,M ]; ε∈{+,0,−})

{

π(i− 1, u) + ψū,v̄ + ft(hi)v̄

+ fs([gi+j,i+k;
←−
hi])ε + fo(gi+j,i+k)

+ fr(j, k)}

• Backtrack for the optimal sequence
y∗ = {y∗1 · · ·y∗n}

y∗n = arg max
v∈T

{π(n, v) + ψv̄,STOP }

Loop for i ∈ {n− 1, · · · , 1}
y∗i = arg max

v∈T
{π(i, v) + ψv̄,ȳ∗

i+1
}

Note that START appears before the start of the
input sentence and STOP appears after the end of
the input sentence.

The time complexity is O(n|T |) = O(nM2).

Algorithm 1 Decoding based on Viterbi
Initialization for i = 1 do

for v̄ ∈ {I, E,O} do
v = v̄
π(1, v) = ψSTART,v̄ + ft(h1)v̄

end
for v̄ ∈ {B,S} do

for j ∈ [−M,M ] do
for k ∈ [j,M ] do

for ε ∈ {+, 0,−} do
v = v̄εj,k
π(1, v) = ψSTART,v̄ +

ft(h1)v̄+fs([g1+j,1+k;
←−
h1])ε+

fo(g1+j,1+k) + fr(j, k)

end
end

end
end

end
Loop Forward for i ∈ {2, · · · , n} do

for v̄ ∈ {I, E,O} do
v = v̄
π(i, v) =
maxu∈T {π(i− 1, u) + ψū,v̄ + ft(hi)v̄}

end
for v̄ ∈ {B,S} do

for j ∈ [−M,M ] do
for k ∈ [j,M ] do

for ε ∈ {+, 0,−} do
v = v̄εj,k
π(i, v) = maxu∈T {π(i −
1, u) + ψū,v̄ + ft(hi)v̄ +

fs([gi+j,i+k;
←−
hi])ε +

fo(gi+j,i+k) + fr(j, k)}
end

end
end

end
end
Backward for the optimal sequence y∗ =
{y∗1 · · ·y∗n} for i ∈ {n, · · · , 1} do

if i = n then
y∗n = arg maxv∈T {π(n, v) + ψv̄,STOP }

end
else

y∗i = arg maxv∈T {π(i, v) + ψv̄,ȳ∗
i+1
}

end
end



Gold Peng et al. (2019) JETt JETo

0 +
Good food at the right price ,

0 +
Good food at the right price ,

0 +
Good food at the right price ,

0
Good food at the right price ,

Table 3: Qualitative Analysis
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Figure 2: F1(%) scores (y-axis) of different lengths
(x-axis) for targets, opinion spans and offsets on the
dataset 14Lap.
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Figure 3: F1(%) scores (y-axis) of different lengths
(x-axis) for targets, opinion spans and offsets on the
dataset 15Rest.

5 Analysis

5.1 Robustness Analysis
We present the performance on targets, opinion
spans and offsets of different lengths for two mod-
els JETt(M = 6) and JETo(M = 6) with BERT
on 3 datasets 14Lap,15Rest and 16Rest in Fig-
ure 2, Figure 3 and Figure 4 respectively.

5.2 Qualitative Analysis
We present one additional example sentence se-
lected from the test data as well as predictions
by Peng et al. (2019), JETt and JETo in Table 3.
As we can see, the gold data contains two triplets.
Peng et al. (2019) only predicts 1 opinion span,
and therefore incorrectly assigns the opinion span
“Good” to the target “price”. JETt is able to make
the correct predictions. JETo only predicts 1 triplet
correctly. The qualitative analysis helps us to better
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Figure 4: F1(%) scores (y-axis) of different lengths
(x-axis) for targets, opinion spans and offsets on the
dataset 16Rest.

understand the differences among these models.

6 More Related Work

The task of joint entity and relation extraction is
also related to joint triplet extraction. Different
from our task, such a relation extraction task aims
to extract a pair of entities (instead of a target and
an opinion span) and their relation as a triplet in
a joint manner. Miwa and Sasaki (2014) and Li
and Ji (2014) used approaches motivated by a table-
filling method to jointly extract entity pairs as well
as their relations. The tree-structured neural net-
works (Miwa and Bansal, 2016) and CRF-based
approaches (Adel and Schütze, 2017) were also
adopted to capture rich context information for
triplet extraction. Recently, Bekoulis et al. (2018)
used adversarial training (Goodfellow et al., 2015)
for this task and results show that it performs more
robustly in different domains. Although these ap-
proaches may not be applied to our task ASTE,
they may provide inspirations for future work.
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