Simultaneous Speech Translation in Google Translate

Jeff Pitman <jrp@google.com>
For animations, see: t.co/mz6oZiLEP4

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas October 6 - 9, 2020, Volume 2: MT User Track

Page 341

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas October 6 - 9, 2020, Volume 2: MT User Track

Page 342

Agenda

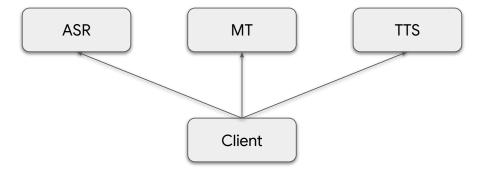
- ⁰¹ Overview
- Long-form Audio Input
- Streaming Translation
- Streaming Text-to-Speech
- OF Putting It Together

01

Overview

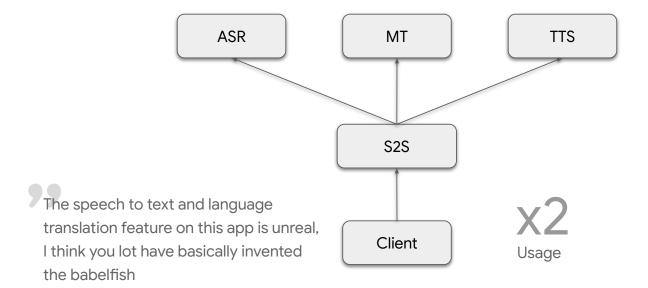
Conversational Turn-taking

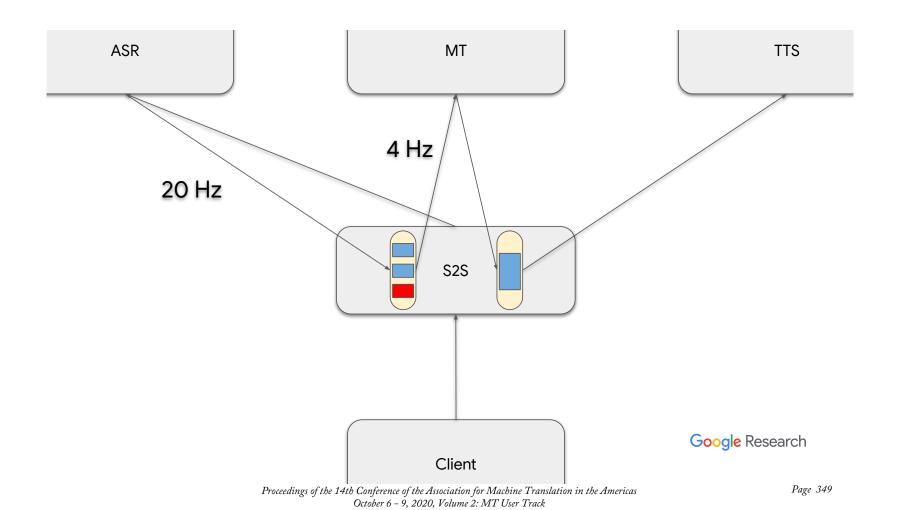
2011


Components

- ASR
- MT
- TTS

Model Orchestration


Client-based Model Orchestration



(Low) Latency is a feature.

Server-based Model Orchestration

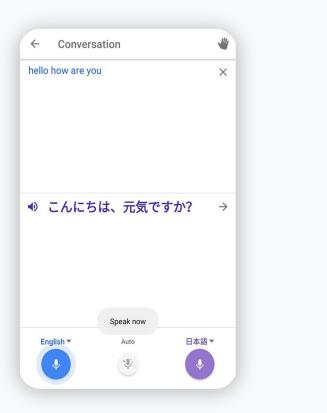
3100

950

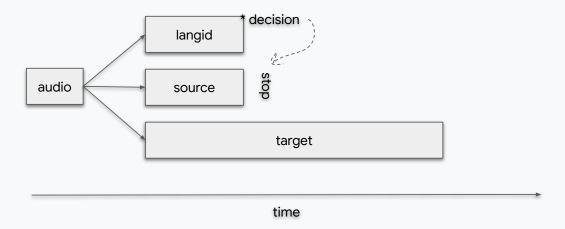
500

milliseconds at 95%, previously

milliseconds at 95%, now


milliseconds at 90%, now

User experience


Input interactions

- Tap and hold
- Quick tap
- Auto mic

Auto Mic

What if we kept the microphone on?

02

Long-form Audio Input

Codecs

The Timeout

ASR Model training

Codecs

AMR-WB¹ only worked well with clean recording environments and at close distance to the microphone.

Opus² @24kbps performed just as well as uncompressed audio. Ended up using 32kbps.

- 1. Adaptive Multi-rate Wideband
- 2. Opus

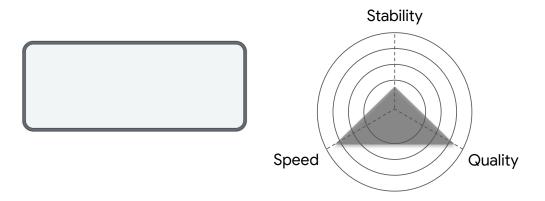
The Timeout

Problem: ASR limited to 30 second sessions. But, anything could cause a disconnection.

Solution¹: Maintain audio buffer on client to stitch sessions together.

1. <u>live-transcribe-speech-engine</u>

ASR Model


Key insight was to move to models trained on long-form audio.

03

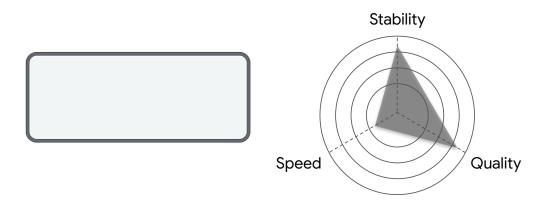
Streaming Translation

UX Research

Participants thought that the instability of the text results were disruptive.

Without preparation, professional interpreters are roughly 60% to 70% accurate in simultaneous interpretation.

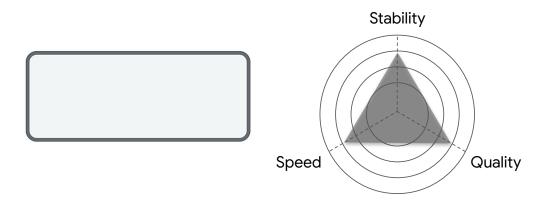
Research¹ has shown that audiences get uncomfortable if results take too long.

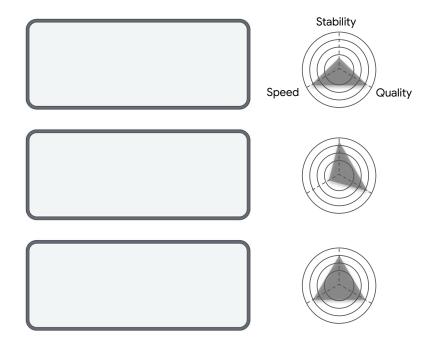

1. Lee, T.-H. 2002. "Ear voice span in English into Korean simultaneous interpretation." Meta 47 (4): 596–606.

"The sentence continues to change while I'm reading it and it is making me nervous."

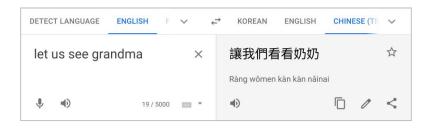
Participant

Use case	ASR	TTS	Overall experience
Lecture	1	\checkmark	1
tour	1	×	1
: walking	1	×	1
Boat / Bus	X	1	X
	×	V	X

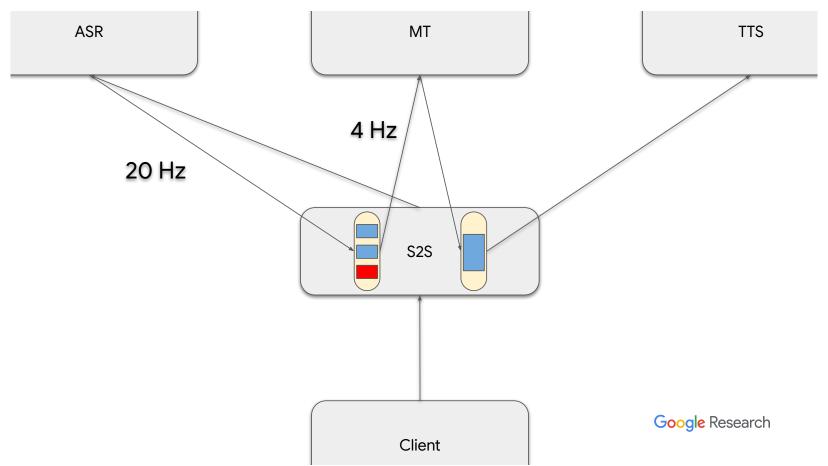

Tech. Research


We can re-use off-the-shelf ASR and NMT systems by using edit distance heuristics to stabilize prefixes.

We can further improve stabilization by making NMT prefix-aware. Beam search is then constrained on prefixes.


We evaluate performance using a metrics triple of BLEU, Voice-to-eye Latency, and Erasure (flickering rate).

Unspoken Punctuation


+8 BLEU

04

Streaming Text-to-Speech

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas October 6 - 9, 2020, Volume 2: MT User Track Page 367

Goals

Voice-to-ear Latency

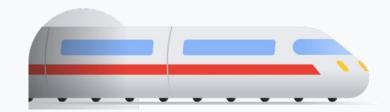
Prosody

Pure VUI?

Voice-to-ear

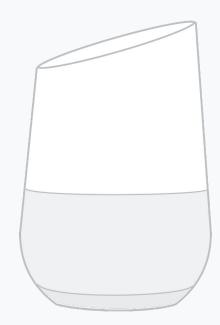
Slow finality of ASR results

Short-form ASR models


TTS Speed

Prosody

TTS Speed


Length limitations

Pure Voice UI

Quality

Navigation

05

Putting It Together

Evaluation

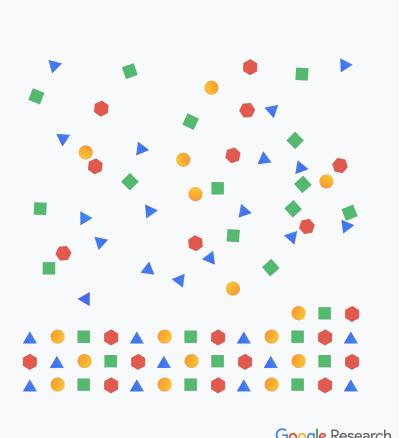
Results

Evaluation

We wanted to see if human judgement in a controlled environment can help make launch decisions.

Initial setup

Asked 3 bilingual raters to watch original video, read final and static NMT output, answer adequacy/fluency and gist questions.


Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent quis dolor lacus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. In eu mi placerat, facilisis tellus vitae, efficitur nisi. Nulla placerat placerat sem, tempor vulputate libero suscipit sed. Mauris sit amet massa eu justo dignissim pharetra. Praesent sapien tortor, ornare et leo nec, aliquet suscipit nisi. Aenean egestas mauris eget hendrerit finibus. In eleifend ex pharetra tellus dignissim.

Test set

~100 1-minute publically available videos.

Focused on clean audio with 1 person speaking.

Problems

Domain of test sets misaligned across languages

Raters were not trustworthy .. understanding source language was a bias .. just answering yes to everything was a bias.

Improvements

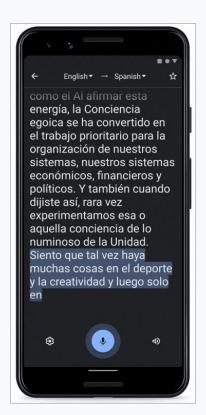
Minimized video selection bias with better QC

Minimized bilingual bias by using a monolingual template

Ground truth

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent quis dolor lacus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. In eu mi placerat, facilisis tellus vitae, efficitur nisi. Nulla placerat placerat sem, tempor vulputate libero suscipit sed. Mauris sit amet massa eu justo dignissim pharetra. Praesent sapien tortor, ornare et leo nec, aliquet suscipit nisi. Aenean egestas mauris eget hendrerit finibus. In eleifend ex pharetra tellus dignissim.

System output


Lorem ipsum dolor sit amet, consectetur adipiscing elit. Praesent quis dolor lacus. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. In eu mi placerat, facilisis tellus vitae, efficitur nisi. Nulla placerat placerat sem, tempor vulputate libero suscipit sed. Mauris sit amet massa eu justo dignissim pharetra. Praesent sapien tortor, ornare et leo nec, aliquet suscipit nisi. Aenean egestas mauris eget hendrerit finibus. In eleifend ex pharetra tellus dignissim.

Results

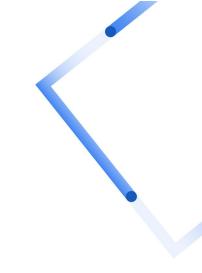
Launched support for 10 languages.

Launched streaming TTS support for Pixel Buds.

++

What's next?

Advancing Speech Translation


Long-form Audio Input

Streaming Translation

Streaming Text-to-Speech

Evaluation

Thank You

Jeff Pitman

Senior Staff Engineering Manager

Deck Props: Shilp Vaishnav, Tom Small, Kannu Mehta, Mengmeng Niu, Bryan Lin, Naveen Ari, Colin Cherry