

Online Language Model Adaptation via N-gram Mixtures for Statistical Machine Translation

Germán Sanchis-Trilles

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia, Spain

Mauro Cettolo

FBK - Ricerca Scientifica e Tecnologica, Trento, Italy

Saint-Raphaël, May 27-28, 2010

Sanchis-Trilles and Cettolo

Online LM adaptation

Outline

- Introduction
- Model adaptation
- Experiments
- Future work
- Conclusions

1

Introduction

- Aimed towards introducing more context in the system
- Key idea: enhance target LM by introducing parameters that are adapted to the input text
- LM is implemented as mixture of sub LMs
- Experiments on Europarl v2 task (WMT06)

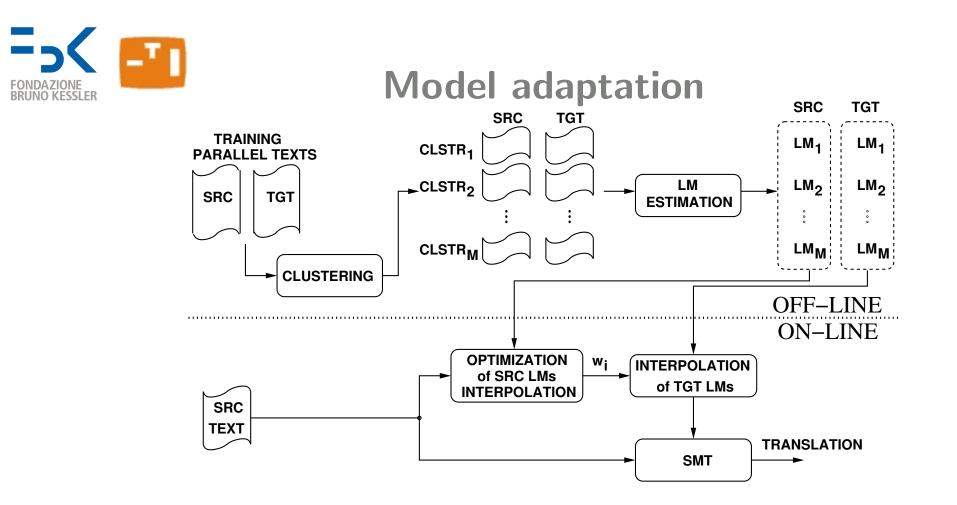
Model adaptation

• Most usual translation rule:

$$\mathbf{e}^* = \operatorname*{argmax}_{\mathbf{e}} \sum_{r=1}^R \lambda_r h_r(\mathbf{e}, \mathbf{f})$$

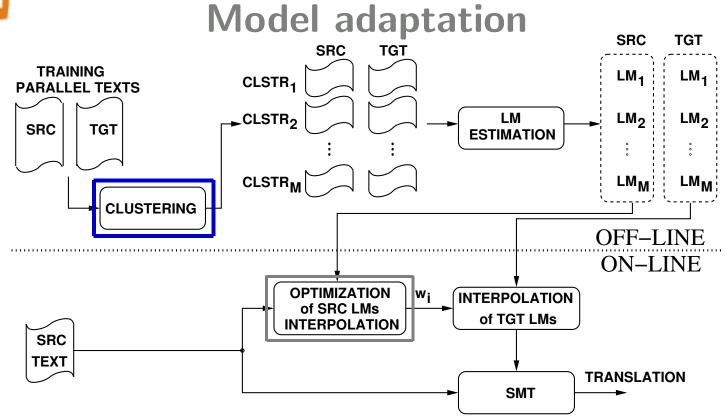
• LM can be computed either as a single LM or as a mixture of LMs, i.e.:

$$p(\mathbf{e}) = \sum_{i=1}^{M} w_i p_i(\mathbf{e})$$



- \rightarrow Assume a partition of the parallel training data into M bilingual clusters
- \rightarrow Train specific source/target LMs for each partition
- $\rightarrow\,$ Before translation, estimate the optimal weights of source LMs via EM
- $\rightarrow\,$ Transfer the resulting weights to the target LM mixture

4

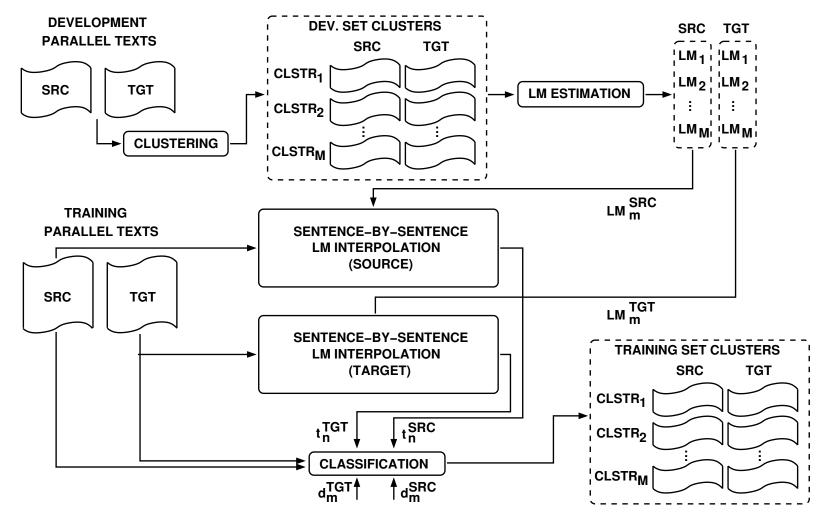


- \rightarrow Assume a partition of the parallel training data into M bilingual clusters
- \rightarrow Train specific source/target LMs for each partition
- \rightarrow Before translation, estimate the optimal weights of source LMs via EM
- $\rightarrow\,$ Transfer the resulting weights to the target LM mixture

- Goal: group similar sentences from the lexical point of view
- Sentence pair represented as bag of source and target words
- CLUTO package used, direct k-way partitioning and cosine distance
- Number of clusters set to 4 according to preliminary investigation
- Additional LM built on the whole training data

 \Rightarrow First clustering approach: direct clustering of training data

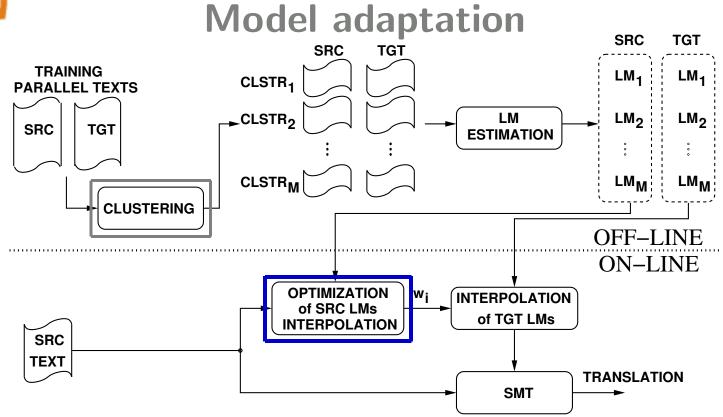
- Adaptation: cover mismatches between training and development/test
 → direct clustering may not be the best choice
- $\Rightarrow\,$ Cluster development set and mirror it on training data
 - 1. Cluster bilingual development set
 - 2. Estimate source and target LMs for each cluster
 - 3. For each training sentence:
 - Compute best interpolation of cluster-LMs, in source and target sides
 - Classify it according to most-weighted LMs
 - Intuitively:
 - LM is a compact representation of the cluster
 - weights in the optimization provide a measure of similarity



8

Clustering: Test-induced

- Test data can be used to induce the clusterings
- \Rightarrow Target side is not available
- \Rightarrow Only relies on source data, but used to classify both sides!
- \Rightarrow May not lead to reliable benefits
- \Rightarrow Take advantage of information of the actual test
- \Rightarrow Clustering performed only on source data, analogously as for dev-induced

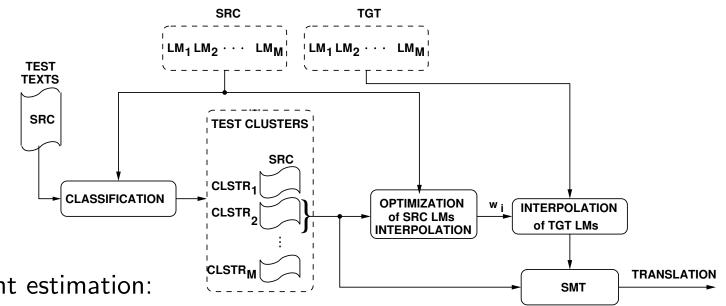


- \rightarrow Assume a partition of the parallel training data into M bilingual clusters
- \rightarrow Train specific source/target LMs for each partition
- \rightarrow Before translation, estimate the optimal weights of source LMs via EM
- $\rightarrow\,$ Transfer the resulting weights to the target LM mixture

- a) Set specific weights
- b) Sentence specific weights
- c) Two-steps weight estimation

- a) Set specific weights:
 - * LM weights estimated on the source side of the complete test set
 - + Straightforward
 - Does not consider differences between sentences
 - $\Rightarrow\,$ benefit of approach may fade

- b) Sentence specific weights:
 - $\ast\,$ One set of weights for each sentence in the test set
 - + EM procedure allowed complete freedom
 - Weights estimated on few data
 - $\Rightarrow\,$ possibly, not very reliable weights



- c) Two-step weight estimation:
 - 1. Estimate sentence-specific weights
 - 2. Assign each source sentence to the cluster with the most weighted LM
 - 3. Re-estimate one single set of weights for each of such clusters
 - $+\,$ Mirror the clustering of the training data into the test set
 - + Avoid possible data sparseness issues

Experiments: Corpora

- Experiments conducted on the Europarl corpus (setup of WMT06)
- Consists of transcription of European Parliament speeches
- Experiments conducted on De-En, Es-En and Fr-En, both directions

		De	En
ng	Sentences	751K	
Training	Run. words	15.3M	16.1M
	Voc.	195K	66K
Dev.	Sentences	2000	
	Run. words	55K	59K
	OoV	432	125
Test	Sentences	2000	
	Run. words	54K	58K
	OoV	377	127

Experiments: Baseline system

- Built upon Moses SMT toolkit. Log-linear model with
 - $\rightarrow\,$ Phrase-based translation model
 - \rightarrow Language model
 - \rightarrow Word and phrase penalties
 - $\rightarrow\,$ Distortion model
- Weights of the log-linear combination optimized with MERT
- Language model: 5-gram with KN smoothing
- Distortion model: "orientation-bidirectional-fe"

Experiments

• 10K bootstrap repetitions, 95% confidence level pairwise improvement

Clustering method	Weight optimization	BLEU	TER	Signif BLEU/TER
	baseline	19.0	67.4	
	sentence	18.2	67.4	yes/no
direct	two-steps	18.1	67.4	yes/no
	test set	18.0	67.6	yes/no
	sentence	19.2	66.7	yes/yes
dev-induced	two-steps	19.2	66.7	yes/yes
	test set	18.7	67.2	yes/no
	sentence	18.9	67.3	no/no
test-induced	two-steps	18.9	67.3	no/no
	test set	18.9	67.1	no/yes

General remarks

- Best results achieved when using:
 - development-induced clustering
 - two-steps (or sentence-based) weight optimization
- Results found to be statistically significant and coherent
- sentence and two-steps weighting schemes yield similar results \rightarrow For long sentences, sentence is best (cheaper)
- Test and development sets are extracted from a narrow time frame \rightarrow development-induced clustering exploits un-even distribution of data better
- Test clustering relies on monolingual data
 - \rightarrow Much less information for clustering (less than half of it!)

Conclusions

- Technique for adapting the LM of SMT systems to actual input
- LM is assumed to be provided as a linear interpolation of sub-LMs
- Weights are estimated dynamically on the text to be translated
- Best results by:
 - \rightarrow Exploiting both source and target of the development set
 - \rightarrow Weight estimation at sentence level or two-steps approach
- Such results yield consistent improvements over the reference baseline

Future work

- Results achieved depend on the clustering technique employed
 → Clustering based on *n*-grams or PoS-tag information
- Supervised clustering
 - \rightarrow Detailed supervision is available only for limited amount of data
- Learn source-to-target weight mapping schemes from parallel data

Questions? Comments? Suggestions?